Cách viết nào sau đây là đúng?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Kí hiệu “\( \subset \)” dùng để chỉ mối quan hệ giữa các tập hợp với nhau, kí hiệu “\( \in \)” dùng để chỉ mối quan hệ giữa phần tử với tập hợp.
Ta có: \(\left[ {a;\,b} \right] = \left\{ {x \in \mathbb{R}|a \le x \le b} \right\}\), \(\left( {a;\,b} \right] = \left\{ {x \in \mathbb{R}|a < x \le b} \right\}\), \(\left\{ a \right\}\) là tập hợp gồm 1 phần tử là \(a\).
Từ đó suy ra:
+ Cách viết \(a \subset \left[ {a;\,b} \right]\) là sai, do \(a\) là một phần tử;
+ Cách viết \(\left\{ a \right\} \subset \left[ {a;\,b} \right]\) là đúng, vì mọi phần tử của tập hợp \(\left\{ a \right\}\) đều là phần tử của tập hợp \(\left[ {a;\,b} \right]\) nên tập \(\left\{ a \right\}\) là tập con của tập \(\left[ {a;\,b} \right]\).
+ Cách viết \(\left\{ a \right\} \in \left[ {a;\,b} \right]\) là sai, do \(\left\{ a \right\}\) và \(\left[ {a;\,b} \right]\) là hai tập hợp.
+ Cách viết \(a \in \left( {a;\,b} \right]\) là sai do tập hợp \(\left( {a;\,b} \right]\) không chứa phần tử \(a\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo tính chất góc ngoài của tam giác \(ABT\) tại đỉnh \(B\) ta có: \(\widehat {TBN} = \widehat {ATB} + \widehat {TAB}\).
Suy ra \(\widehat {ATB} = \widehat {TBN} - \widehat {TAB} = 39,6^\circ - 27,4^\circ = 12,2^\circ \).
Áp dụng định lí sin cho tam giác \(TAB\) ta có: \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB \cdot \sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).
Xét tam giác vuông \(TBN\) ta có:
\(TN = TB \cdot \sin \widehat {TBN} = \frac{{AB \cdot \sin \widehat {TAB} \cdot \sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1\,\,536 \cdot \sin 27,4^\circ \cdot \sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2\,\,132,14\).
Vậy chiều cao của ngọn núi xấp xỉ 2 132,14 m.
Câu 2
Lời giải
Đáp án đúng là: D

Ta có: \(\overrightarrow {DN} = \overrightarrow {DA} + \overrightarrow {AN} = - \overrightarrow {AD} + \overrightarrow {AN} \).
Do \(N\) là trung điểm của \(AE\) nên \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} \).
Lại có \(E\) là trung điểm của \(BC\) nên với điểm \(A\) ta có: \(\overrightarrow {AE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).
Do đó, \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} = \frac{1}{2} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \).
Lại có: \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {BA} = \overrightarrow {AC} - \overrightarrow {AB} \) (do \(ABCD\) là hình bình hành nên \(\overrightarrow {CD} = \overrightarrow {BA} \)).
Khi đó ta có: \(\overrightarrow {DN} = - \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) + \left( {\frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \).
Vậy \(p = \frac{5}{4};\,q = - \frac{3}{4}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
