Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét bất phương trình \(2x - 4y \ge 7\).
Bất phương trình có hai ẩn \(x,\,\,y\) có lũy thừa bậc cao nhất là bậc một và các hệ số đều khác 0. Do đó, đây là một bất phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo tính chất góc ngoài của tam giác \(ABT\) tại đỉnh \(B\) ta có: \(\widehat {TBN} = \widehat {ATB} + \widehat {TAB}\).
Suy ra \(\widehat {ATB} = \widehat {TBN} - \widehat {TAB} = 39,6^\circ - 27,4^\circ = 12,2^\circ \).
Áp dụng định lí sin cho tam giác \(TAB\) ta có: \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB \cdot \sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).
Xét tam giác vuông \(TBN\) ta có:
\(TN = TB \cdot \sin \widehat {TBN} = \frac{{AB \cdot \sin \widehat {TAB} \cdot \sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1\,\,536 \cdot \sin 27,4^\circ \cdot \sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2\,\,132,14\).
Vậy chiều cao của ngọn núi xấp xỉ 2 132,14 m.
Câu 2
Lời giải
Đáp án đúng là: D

Ta có: \(\overrightarrow {DN} = \overrightarrow {DA} + \overrightarrow {AN} = - \overrightarrow {AD} + \overrightarrow {AN} \).
Do \(N\) là trung điểm của \(AE\) nên \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} \).
Lại có \(E\) là trung điểm của \(BC\) nên với điểm \(A\) ta có: \(\overrightarrow {AE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).
Do đó, \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} = \frac{1}{2} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \).
Lại có: \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {BA} = \overrightarrow {AC} - \overrightarrow {AB} \) (do \(ABCD\) là hình bình hành nên \(\overrightarrow {CD} = \overrightarrow {BA} \)).
Khi đó ta có: \(\overrightarrow {DN} = - \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) + \left( {\frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \).
Vậy \(p = \frac{5}{4};\,q = - \frac{3}{4}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
