Câu hỏi:

20/11/2025 8 Lưu

Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn? 

A. \(2x - 4y \ge 7\);     
B. \(5{x^3} - 4{y^3} < 2\);                               
C. \({x^2} - 2y < 0\);      
D. \({x^2} + 3 > 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét bất phương trình \(2x - 4y \ge 7\).

Bất phương trình có hai ẩn \(x,\,\,y\) có lũy thừa bậc cao nhất là bậc một và các hệ số đều khác 0. Do đó, đây là một bất phương trình bậc nhất hai ẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo tính chất góc ngoài của tam giác \(ABT\) tại đỉnh \(B\) ta có: \(\widehat {TBN} = \widehat {ATB} + \widehat {TAB}\).

Suy ra \(\widehat {ATB} = \widehat {TBN} - \widehat {TAB} = 39,6^\circ - 27,4^\circ = 12,2^\circ \).

Áp dụng định lí sin cho tam giác \(TAB\) ta có: \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB \cdot \sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).

Xét tam giác vuông \(TBN\) ta có:

\(TN = TB \cdot \sin \widehat {TBN} = \frac{{AB \cdot \sin \widehat {TAB} \cdot \sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1\,\,536 \cdot \sin 27,4^\circ \cdot \sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2\,\,132,14\).

Vậy chiều cao của ngọn núi xấp xỉ 2 132,14 m.

Câu 2

A. \(p = \frac{5}{4};\,q = \frac{3}{4}\);             
B. \(p = - \frac{3}{4};\,q = \frac{2}{3}\);                          
C. \(p = - \frac{4}{3};\,q = - \frac{2}{3}\);                       
D. \(p = \frac{5}{4};\,q = - \frac{3}{4}\).

Lời giải

Đáp án đúng là: D

Đáp án đúng là: D (ảnh 1)

Ta có: \(\overrightarrow {DN} = \overrightarrow {DA} + \overrightarrow {AN} = - \overrightarrow {AD} + \overrightarrow {AN} \).

Do \(N\) là trung điểm của \(AE\) nên \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} \).

Lại có \(E\) là trung điểm của \(BC\) nên với điểm \(A\) ta có: \(\overrightarrow {AE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).

Do đó, \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} = \frac{1}{2} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \).

Lại có: \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {BA} = \overrightarrow {AC} - \overrightarrow {AB} \) (do \(ABCD\) là hình bình hành nên \(\overrightarrow {CD} = \overrightarrow {BA} \)).

Khi đó ta có: \(\overrightarrow {DN} = - \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) + \left( {\frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \).

Vậy \(p = \frac{5}{4};\,q = - \frac{3}{4}\).

Câu 3

A. \({a^2}\sqrt 2 \);    
B. \(\frac{{{a^2}}}{{\sqrt 2 }}\);                             
C. \({a^2}\);                    
D. \(\frac{{{a^2}}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{\sqrt 2 }}{4}AB \cdot AC\);            
B. \(\frac{{\sqrt 3 }}{2}BC \cdot AC\);                  
C. \( - \frac{1}{2}AB \cdot AC\);                                
D. \(\frac{1}{2}AB \cdot AC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt 3 \);              
B. \( - \sqrt 3 \);              
C. \(3\);                            
D. \( - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{\sqrt 3 }}{2}\);                                   
B. \(\sqrt 3 \);                                 
C. \(\frac{{\sqrt 3 }}{3}\);                         
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 1 nghiệm;               
B. 2 nghiệm;                   
C. 3 nghiệm;                       
D. Vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP