Câu hỏi:

20/11/2025 11 Lưu

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại một cần \(2{\rm{\;kg}}\) nguyên liệu và 30 giờ, đem lại mức lợi nhuận 40 000 đồng. Mỗi sản phẩm loại hai cần \(4{\rm{\;kg}}\) nguyên liệu và 15 giờ đem lại mức lợi nhuận là 30 000 đồng. Xưởng có \(200{\rm{\;kg}}\) nguyên liệu và 1 200 giờ làm việc. Gọi \(x\left( {x \ge 0} \right)\) là số kg sản phẩm loại một cần sản xuất, \(y\left( {y \ge 0} \right)\) là số kg sản phẩm loại hai cần sản xuất. Một hệ điều kiện giữa \(x\)\(y\) thỏa mãn yêu cầu bài toán là

A. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \le 0}\\{2x + y - 80 \le 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\); 
B. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 < 0}\\{2x + y - 80 < 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\);    
C. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \ge 0}\\{2x + y - 80 \ge 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\); 
D. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 > 0}\\{2x + y - 80 > 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(x\left( {x \ge 0} \right)\) là số kg sản phẩm loại một cần sản xuất, \(y\left( {y \ge 0} \right)\) là số kg sản phẩm loại hai cần sản xuất.

Xưởng có 200 kg nguyên liệu và mỗi kg sản phẩm loại một cần 2 kg nguyên liệu, mỗi kg sản phẩm loại hai cần 4 kg nguyên liệu nên ta có bất phương trình \(2x + 4y \le 200\), bất phương trình này tương đương với \(x + 2y - 100 \le 0\).

Xưởng có 1 200 giờ làm việc và mỗi kg sản phẩm loại một cần 30 giờ để sản xuất, mỗi kg sản phẩm loại hai cần 15 giờ để sản xuất nên ta có bất phương trình \(30x + 15y \le 1\,\,200,\) bất phương trình này tương đương với \(2x + y - 80 \le 0\).

Vậy ta có một hệ bất phương trình điều kiện giữa \(x\)\(y\) thỏa mãn yêu cầu bài toán là

\(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \le 0}\\{2x + y - 80 \le 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo tính chất góc ngoài của tam giác \(ABT\) tại đỉnh \(B\) ta có: \(\widehat {TBN} = \widehat {ATB} + \widehat {TAB}\).

Suy ra \(\widehat {ATB} = \widehat {TBN} - \widehat {TAB} = 39,6^\circ - 27,4^\circ = 12,2^\circ \).

Áp dụng định lí sin cho tam giác \(TAB\) ta có: \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB \cdot \sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).

Xét tam giác vuông \(TBN\) ta có:

\(TN = TB \cdot \sin \widehat {TBN} = \frac{{AB \cdot \sin \widehat {TAB} \cdot \sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1\,\,536 \cdot \sin 27,4^\circ \cdot \sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2\,\,132,14\).

Vậy chiều cao của ngọn núi xấp xỉ 2 132,14 m.

Câu 2

A. \(p = \frac{5}{4};\,q = \frac{3}{4}\);             
B. \(p = - \frac{3}{4};\,q = \frac{2}{3}\);                          
C. \(p = - \frac{4}{3};\,q = - \frac{2}{3}\);                       
D. \(p = \frac{5}{4};\,q = - \frac{3}{4}\).

Lời giải

Đáp án đúng là: D

Đáp án đúng là: D (ảnh 1)

Ta có: \(\overrightarrow {DN} = \overrightarrow {DA} + \overrightarrow {AN} = - \overrightarrow {AD} + \overrightarrow {AN} \).

Do \(N\) là trung điểm của \(AE\) nên \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} \).

Lại có \(E\) là trung điểm của \(BC\) nên với điểm \(A\) ta có: \(\overrightarrow {AE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).

Do đó, \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AE} = \frac{1}{2} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \).

Lại có: \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {BA} = \overrightarrow {AC} - \overrightarrow {AB} \) (do \(ABCD\) là hình bình hành nên \(\overrightarrow {CD} = \overrightarrow {BA} \)).

Khi đó ta có: \(\overrightarrow {DN} = - \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) + \left( {\frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \).

Vậy \(p = \frac{5}{4};\,q = - \frac{3}{4}\).

Câu 3

A. \({a^2}\sqrt 2 \);    
B. \(\frac{{{a^2}}}{{\sqrt 2 }}\);                             
C. \({a^2}\);                    
D. \(\frac{{{a^2}}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{\sqrt 2 }}{4}AB \cdot AC\);            
B. \(\frac{{\sqrt 3 }}{2}BC \cdot AC\);                  
C. \( - \frac{1}{2}AB \cdot AC\);                                
D. \(\frac{1}{2}AB \cdot AC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt 3 \);              
B. \( - \sqrt 3 \);              
C. \(3\);                            
D. \( - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 1 nghiệm;               
B. 2 nghiệm;                   
C. 3 nghiệm;                       
D. Vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{\sqrt 3 }}{2}\);                                   
B. \(\sqrt 3 \);                                 
C. \(\frac{{\sqrt 3 }}{3}\);                         
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP