Câu hỏi:

20/11/2025 10 Lưu

Cho hình vẽ dưới đây. Các số hạng được viết trong các ô vuông từ trái sang phải tạo thành cấp số cộng. Giá trị của \(x\) trong hình vẽ đã cho là

A.

\( - 4.\)

B.

7.

C.

4.

D.

\( - 7.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Vì các số hạng được viết trong các ô vuông từ trái sang phải tạo thành cấp số cộng nên ta coi \({u_1} = 2\) là số hạng đầu của cấp số cộng với công sai \(d.\)

Khi đó \({u_4} = x\) và \({u_5} = - 10.\)

Ta có: \({u_5} = {u_1} + \left( {5 - 1} \right)d \Rightarrow - 10 = 2 + \left( {5 - 1} \right)d \Rightarrow d = - 3.\)

\( \Rightarrow {u_4} = {u_1} + \left( {4 - 1} \right)d = 2 + \left( {4 - 1} \right)\left( { - 3} \right) = - 7.\)

Suy ra \(x = - 7.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

\(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

\(y = \frac{{x + 1}}{{x - 2}}.\)

\(y = \frac{1}{{{x^2} - 4}}.\)

\(y = \frac{{\sqrt x }}{{x - 2}}.\)

Lời giải

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(CD{\rm{//}}\left( {SAB} \right).\)

\(AB{\rm{//}}\left( {SCD} \right).\)

\[BC{\rm{//}}\left( {SAD} \right).\]

\(AC{\rm{//}}\left( {SBD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP