Yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Ba điểm phân biệt.
Hai đường thẳng cắt nhau.
Bốn điểm phân biệt.
Một điểm và một đường thẳng.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Xét phương án A: Trường hợp ba điểm thẳng hàng không xác định được một mặt phẳng.
Xét phương án C: Trường hợp bốn điểm không đồng phẳng không xác định được một mặt phẳng.
Xét phương án D: Trường hợp điểm nằm trên đường thẳng không xác định được một mặt phẳng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM{\rm{//}}SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\)
Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(MN{\rm{//}}\left( {ABCD} \right).\)
\(MP{\rm{//}}\left( {ABCD} \right).\)
Lời giải
Đáp án đúng là: B

Ta có: \(P\) là trung điểm của \(SD.\)
\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)
\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)
Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.
Câu 3
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{3}{2}\).
\(\left( {{u_n}} \right)\) không phải là cấp số nhân.
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = \frac{5}{2}\) và số hạng đầu \({u_1} = 3\).
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{{15}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\left( {ABCD} \right).\)
\(\left( {SAD} \right).\)
\(\left( {SAC} \right).\)
\(\left( {SBD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\( - 1;\,\,2;\,\,5\).
\( - 1;\,\,3;\,\,7\).
\(1;\,\,4;\,\,7\).
\(4;\,\,7;\,\,10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)
\(y = \frac{{x + 1}}{{x - 2}}.\)
\(y = \frac{1}{{{x^2} - 4}}.\)
\(y = \frac{{\sqrt x }}{{x - 2}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.