Cho mẫu số liệu ghép nhóm về thời gian truy cập Internet mỗi buổi tối của một số học sinh như sau:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm trên là
\(15,25.\)
\(20.\)
\(18,1.\)
\(19,34.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Cỡ mẫu \(n = 3 + 12 + 15 + 24 + 2 = 56.\)
Gọi \({x_1},...,{x_{56}}\) là thời gian truy cập Internet mỗi buổi tối của 56 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.
Khi đó: \({x_1},...,{x_3}\) thuộc nhóm \[\left[ {9,5;12,5} \right);\]
\({x_4},...,{x_{15}}\) thuộc nhóm \(\left[ {12,5;15,5} \right);\)
\({x_{16}},...,{x_{30}}\) thuộc nhóm \(\left[ {15,5;18,5} \right);\)
\({x_{31}},...,{x_{54}}\) thuộc nhóm \(\left[ {18,5;21,5} \right);\)
\({x_{55}},\,\,{x_{56}}\) thuộc nhóm \(\left[ {21,5;24,5} \right).\)
Ta có tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\) và trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\)
Vì \({x_{28}},\,\,{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.
Do đó, \({u_m} = 15,5;\,\,n = 56;{n_m} = 15;\,\,C = 3 + 12 = 15;\,\,{u_{m + 1}} - {u_n} = 18,5 - 15,5 = 3,\) ta có:
\({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1.\)
Vậy tứ phân vị thứ hai của mẫu số liệu ghép nhóm đã cho là \(18,1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\({u_{10}} = 39\,\,366.\)
\({u_{10}} = 118\,\,098.\)
\({u_{10}} = 972.\)
\({u_{10}} = 324.\)
Lời giải
Đáp án đúng là: A

Câu 2
\(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)
\(y = \frac{{x + 1}}{{x - 2}}.\)
\(y = \frac{1}{{{x^2} - 4}}.\)
\(y = \frac{{\sqrt x }}{{x - 2}}.\)
Lời giải
Đáp án đúng là: A
Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)
Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)
Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)
Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)
Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)
Câu 3
\({c_3} = 168.\)
\({c_3} = 169.\)
\({c_3} = 7.\)
\({c_3} = 171.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\( - 4.\)
7.
4.
\( - 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

