Tìm giới hạn sau:\(\mathop {\lim }\limits_{n \to + \infty } \frac{{3n - 1}}{{2n + 3}}\).
Quảng cáo
Trả lời:
\(\mathop {\lim }\limits_{n \to + \infty } \frac{{3n - 1}}{{2n + 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {3 - \frac{1}{n}} \right)}}{{n\left( {2 + \frac{3}{n}} \right)}}\) \( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 - \frac{1}{n}}}{{2 + \frac{3}{n}}} = \frac{3}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi \({x_1};{x_2};{x_3};...;{x_{20}}\) là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.
Khi đó: \({x_1};{x_2} \in \left[ {5;7} \right)\);
\({x_3};...;{x_9} \in \left[ {7;9} \right)\);
\({x_{10}};...;{x_{16}} \in \left[ {9;11} \right)\);
\({x_{17}};...;{x_{19}} \in \left[ {11;13} \right)\);
\({x_{20}} \in \left[ {13;15} \right)\).
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {9;11} \right)\).
Khi đó \(n = 20;{n_m} = 7;C = 9;{u_m} = 9;{u_{m + 1}} = 11\).
Ta có \({Q_3} = 9 + \frac{{\frac{{3 \cdot 20}}{4} - 9}}{7} \cdot \left( {11 - 9} \right) \approx 10,71 \approx 11\).
Lời giải
Gọi ba số cần tìm là \[{u_1},{\rm{ }}{u_2},{\rm{ }}{u_3}\] với \({u_1} \ne {u_2} \ne {u_3} \ne 0\).
Vì \[{u_1},{\rm{ }}{u_2},{\rm{ }}{u_3}\] tạo thành cấp số cộng với công sai \(d \ne 0\) nên \[{u_2} = {u_1} + d,{\rm{ }}{u_3} = {u_1} + 2d\].
Hơn nữa, \[{u_1} + {u_2} + {u_3} = 6 \Leftrightarrow {u_1} + \left( {{u_1} + d} \right) + \left( {{u_1} + 2d} \right) = 6 \Leftrightarrow {u_1} + d = 2\].
Lại có \[{u_2},{\rm{ }}{u_1},{\rm{ }}{u_3}\] tạo thành cấp số nhân hay \[{u_1} + d,{\rm{ }}{u_1},{\rm{ }}{u_1} + 2d\] tạo thành cấp số nhân, điều này xảy ra khi và chỉ khi \(\frac{{{u_1}}}{{{u_1} + d}} = \frac{{{u_1} + 2d}}{{{u_1}}}\) \[ \Leftrightarrow \left( {{u_1} + d} \right)\left( {{u_1} + 2d} \right) = u_1^2\]
\[ \Leftrightarrow \left( {{u_1} + d} \right)\left( {{u_1} + d + d} \right) = u_1^2 \Leftrightarrow 2\left( {2 + 2 - {u_1}} \right) = u_1^2\]\[ \Leftrightarrow u_1^2 + 2{u_1} - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}{u_1} = 2\\{u_1} = - 4\end{array} \right.\].
Với \({u_1} = 2\), suy ra \[d = 0\]: không thỏa mãn.
Với \({u_1} = - 4\), suy ra \(d = 6\). Vậy ba số cần tìm là \( - 4,{\rm{ }}2,{\rm{ }}8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(MN{\rm{//}}\left( {SBC} \right)\).
\(MN{\rm{//}}\left( {SAB} \right)\).
\(MN{\rm{//}}\left( {SCD} \right)\).
\(MN{\rm{//}}\left( {ABCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\( + \infty .\)
\( - \infty .\)
\(\frac{4}{3}.\)
\(1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

.
.
.
.