Câu hỏi:

21/11/2025 20 Lưu

Cho định lí: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau”. Sử dụng thuật ngữ “điều kiện cần” hoặc “điều kiện đủ” để phát biểu lại định lí. Khẳng định nào sau đây là đúng ?

A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau;
B. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau;
C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau;
D. Hai tam giác có diện tích bằng nhau là điều kiện cần và đủ để chúng bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Định lí: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau” được phát biểu lại bằng một trong các cách sau:

+ “Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau”.

+ “Hai tam giác có diện tích bằng nhau là điều kiện cần để chúng bằng nhau”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:

\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( = - 6{q^2} + 84q + 1\,234\).

Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.

Lại có \(L\left( q \right) = - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a = - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.

Ta có: \(q = - \frac{b}{{2a}} = - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).

Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.

Câu 2

A. \(AC = \sqrt {13} \)cm;                                  
B. \(AC = 13\) cm;                              
C. \(AC = 5\) cm;                
D. \(AC = \sqrt {11} \)cm.

Lời giải

Đáp án đúng là: A

Xét tam giác \(ABC\)

Áp dụng định lí côsin ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)

Thay số \(AB = 3\,cm\), \(BC = 4\,cm\), \(\widehat {ABC} = 60^\circ \) ta có:

\(A{C^2} = {3^2} + {4^2} - 2.3.4.\cos 60^\circ = 13\)

Do \(AC\) > 0 nên \(AC = \sqrt {13} \)cm.

Câu 3

A. \(f\left( x \right) = - {x^2} + 2x + 3\);          
B. \(f\left( x \right) = {x^2} - 2x - 3\);                                    
C. \(f\left( x \right) = - {x^2} + 4x - 3\);           
D. \(f\left( x \right) = - {x^2} - 2x + 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {AB} \);      
B. \(3\overrightarrow {MA} + 2\overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \);
C. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {3MG} \);    
D. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 2;                                
B. 4;                            
C. 1; 
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {BA} + \overrightarrow {BC} \);                                 
B. \(\frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\);        
C. \(\frac{1}{3}\overrightarrow {BA} + \overrightarrow {BC} \);                                 
D. \(\frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP