Cho định lí: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau”. Sử dụng thuật ngữ “điều kiện cần” hoặc “điều kiện đủ” để phát biểu lại định lí. Khẳng định nào sau đây là đúng ?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Định lí: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau” được phát biểu lại bằng một trong các cách sau:
+ “Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau”.
+ “Hai tam giác có diện tích bằng nhau là điều kiện cần để chúng bằng nhau”.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:
\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( = - 6{q^2} + 84q + 1\,234\).
Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.
Lại có \(L\left( q \right) = - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a = - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.
Ta có: \(q = - \frac{b}{{2a}} = - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).
Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.
Câu 2
Lời giải
Đáp án đúng là: A
Xét tam giác \(ABC\)
Áp dụng định lí côsin ta có:
\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)
Thay số \(AB = 3\,cm\), \(BC = 4\,cm\), \(\widehat {ABC} = 60^\circ \) ta có:
\(A{C^2} = {3^2} + {4^2} - 2.3.4.\cos 60^\circ = 13\)
Do \(AC\) > 0 nên \(AC = \sqrt {13} \)cm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

