Câu hỏi:

21/11/2025 27 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}5x + 3y < - 3\\2x - y \ge 5\end{array} \right.\). Cặp số nào sau đây không là nghiệm của hệ bất phương trình trên?

A. \(\left( {0;\,\, - 7} \right)\);                             
B. \(\left( { - 1;\,\, - 10} \right)\);     
C. \(\left( {1;\,\, - 4} \right)\);                                                              
D. \(\left( {2;\,\,3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(5 \cdot 2 + 3 \cdot 3 = 19 > - 3\) nên cặp số \(\left( {2;\,\,3} \right)\) không thỏa mãn bất phương trình thứ nhất trong hệ bất phương trình \(\left\{ \begin{array}{l}5x + 3y < - 3\\2x - y \ge 5\end{array} \right.\). Do đó, cặp số này không là nghiệm của hệ trên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 18;                          
B. \(9\sqrt 3 \);                
C. \(9\sqrt 5 \);      
D. 45.

Lời giải

Đáp án đúng là: A

Đáp án đúng là: C (ảnh 1)

\(E\) là điểm đối xứng của \(D\) qua \(C\) nên \(C\) là trung điểm của \(DE\), do đó \(DE = 2DC = 2 \cdot 3 = 6\).

Ta có: \(\overrightarrow {AE} \cdot \overrightarrow {AB} = \left( {\overrightarrow {AD} + \overrightarrow {DE} } \right) \cdot \overrightarrow {AB} = \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DE} \cdot \overrightarrow {AB} \)

Do \(AB \bot AD\) nên \(\overrightarrow {AD} \cdot \overrightarrow {AB} = 0\).

Hai vectơ \(\overrightarrow {AB} \)\(\overrightarrow {DE} \) cùng hướng nên \(\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {DE} } \right) = 0^\circ \).

Do đó, DEAB=DEABcosAB,DE=DEABcos0°=631=18

Vậy \(\overrightarrow {AE} \cdot \overrightarrow {AB} = 0 + 18 = 18\).

Lời giải

Gọi \(O,\,\,A,\,\,B\) lần lượt là vị trí sân bay và hai máy bay sau 2 tiếng.

Hướng \({\rm{N25^\circ E}}\) là hướng tạo với hướng bắc một góc \(25^\circ \) và tạo với hướng đông một góc \(90^\circ - 25^\circ = 65^\circ \). Ta mô phỏng bài toán đã cho như sau:

Hai máy bay cùng cấ (ảnh 1)

Quãng đường máy bay bay theo hướng đông sau 2 tiếng là

\(OA = 540 \cdot 2 = 1\,\,080\) (km).

Quãng đường máy bay bay theo hướng \({\rm{N25^\circ E}}\) sau 2 tiếng là

\(OB = 670 \cdot 2 = 1\,\,340\) (km).

Ta có: \(\widehat {AOB} = 65^\circ \), \(OA = 1\,\,080,\,\,OB = 1\,\,340\).

Áp dụng định lí côsin trong tam giác \(OAB\), ta có:

\(A{B^2} = O{A^2} + O{B^2} - 2 \cdot OA \cdot OB \cdot \cos \widehat {AOB}\)

\( = 1\,\,{080^2} + 1\,\,{340^2} - 2 \cdot 1\,\,080 \cdot \,1\,\,340 \cdot \cos 65^\circ \approx 1\,\,738\,\,774\).

Suy ra \(AB \approx \sqrt {1\,\,738\,\,774} \approx 1\,\,319\) (km).

Vậy sau 2 tiếng, hai máy bay cách nhau khoảng 1 319 km.

Câu 3

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - \infty ;\,\, + \infty } \right)\) có đồ thị như hình vẽ dưới đây.

Đáp án đúng là: D (ảnh 1)

Mệnh đề nào sau đây đúng?

A. Hàm số đồng biến trên khoảng \(\left( {0;\,\,2} \right)\);                                                                             
B. Hàm số đồng biến trên khoảng \(\left( { - 1;\,\,0} \right)\)
C. Hàm số nghịch biến trên khoảng \(\left( { - 3;\,\,0} \right)\);    
D. Hàm số nghịch biến trên khoảng \(\left( {0;\,\,3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau:

Đáp án đúng là: C (ảnh 1)

Phương trình của parabol này là

 

A. \(y = {x^2} - 2x - 1\);                                      
B. \(y = {x^2} + 2x - 2\);                    
C. \(y = 2{x^2} - 4x - 2\);                               
D.\(y = {x^2} + 2x - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 3 }}{2}\];                                         
B. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = 5\];               
C. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 7 }}{4}\];                                                                 
D. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 7 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình bình hành \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của \(BC\)\(CD\). Đặt \(\overrightarrow a = \overrightarrow {AM} ,\overrightarrow b = \overrightarrow {AN} \). Hãy biểu diễn vectơ \(\overrightarrow {AC} \) theo \(\overrightarrow a \)\(\overrightarrow b \).

A. \(\overrightarrow {AC} = \frac{1}{3}\overrightarrow a + \frac{2}{3}\overrightarrow b \);                    
B. \(\overrightarrow {AC} = \frac{2}{3}\overrightarrow a + \frac{2}{3}\overrightarrow b \);                       
C. \(\overrightarrow {AC} = \frac{2}{3}\overrightarrow a + 4\overrightarrow b \);                                    
D. \(\overrightarrow {AC} = \overrightarrow a + 3\overrightarrow b \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP