Câu hỏi:

21/11/2025 151 Lưu

Phương trình \(\sqrt {5{x^2} - 28x - 29} = \sqrt {{x^2} - 5x + 6} \) có tập nghiệm là 

A. \(S = \left\{ { - \frac{5}{4}} \right\}\);          
B. \(S = \left\{ { - \frac{5}{4};\,\,7} \right\}\);                            
C. \(S = \left\{ {\,7} \right\}\);            
D. \(S = \left\{ {\frac{5}{4};\,\, - 7} \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Bình phương hai vế của phương trình \(\sqrt {5{x^2} - 28x - 29} = \sqrt {{x^2} - 5x + 6} \) ta được:

\(5{x^2} - 28x - 29 = {x^2} - 5x + 6\).

Thu gọn phương trình trên ta được: \(4{x^2} - 23x - 35 = 0\). Từ đó suy ra \(x = - \frac{5}{4}\) hoặc \(x = 7\).

Lần lượt thay các giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ { - \frac{5}{4};\,\,7} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang vuông \(AB (ảnh 1)

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]

\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]

Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]

\[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .

Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].

Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].

b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\]\[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].

Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]

\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];

\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\]ADBD=ADBA+AD=ADBA+AD2=0+AD2=a2

Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]

Câu 2

A. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                     
B. \(\overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);             
C. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \);                                             
D. AG=13AB+13AC.

Lời giải

Đáp án đúng là: D

Đáp án đúng là: B (ảnh 1)

Do \(M\) là trung điểm \(BC\) nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)\(AM\) là trung tuyến của tam giác \[ABC\].   

Hơn nữa, \(G\) là trọng tâm của tam giác \[ABC\] nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).  

Do đó, \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).

Câu 3

A.\(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) ;                                                                                           
B.\(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} \);
C.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AB} \cdot \overrightarrow {CD} \);                                             
D.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[2\overrightarrow {a\,} - \overrightarrow {\,b\,} \];                                 
B. \[ - \,\overrightarrow {a\,} + \frac{1}{2}\overrightarrow {b\,} \];                  
C. \[4\,\overrightarrow {a\,} + 2\overrightarrow {b\,} \];                                 
D. \[ - \,\overrightarrow {a\,} + \overrightarrow b \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \(y = a{x^2} + bc + c\,\,\left( {a \ne 0} \right)\) có đồ thị \(\left( P \right)\). Biết đồ thị của hàm số có đỉnh \(I\left( {1;\,\,1} \right)\) và đi qua điểm \(A\left( {2;\,\,3} \right)\). Tính tổng \(S = {a^2} + {b^2} + {c^2}\) ta được kết quả là

A. 29;                          
B. 1;                                 
C. 3;                                 
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP