Câu hỏi:

22/11/2025 8 Lưu

Biểu đồ hình quạt tròn ở hình dưới đây biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) các loại chè xuất khẩu trong năm 2020 của công ty Phú Minh.

 Biểu đồ hình quạt tròn ở hình dưới đây biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) các loại chè xuất khẩu trong năm 2020 của công ty Phú Minh.  (ảnh 1)

Bảng nào sau đây là bảng số liệu thống kê số tiền (tính theo tỉ số phần trăm) công ty chè Phú Minh thu được ở mỗi loại chè năm 2020?

A.
Loại chè Chè thảo dược Chè xanh Chè đen
Tỉ số phần trăm (%) 10 12 78

B.

Loại chè

Chè thảo dược

Chè xanh

Chè đen

Tỉ số phần trăm (%)

12

10

78

C.

Loại chè

Chè thảo dược

Chè xanh

Chè đen

Tỉ số phần trăm (%)

12

78

10

D.

Loại chè

Chè thảo dược

Chè xanh

Chè đen

Tỉ số phần trăm (%)

10

78

12

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Dựa vào biểu đồ biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) các loại chè xuất khẩu trong năm 2020 của công ty Phú Minh ta có tỉ số phần trăm các loại là:

• Chè thảo dược: 10%;

• Chè xanh: 78%.

• Chè đen: 12%;

Khi đó, ta có bảng thống kê như sau:

Loại chè

Chè thảo dược

Chè xanh

Chè đen

Tỉ số phần trăm (%)

10

78

12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \[ABC,\]lấy \[M\] là trung điểm (ảnh 1)

a) Xét \(\Delta AMB\)\(\Delta DMC\) có:

\[MA = MD\] (giả thiết);

\(\widehat {AMB} = \widehat {DMC}\) (hai góc đối đỉnh);

\[MB = MC\] (do \[M\] là trung điểm của \[BC\]).

Vậy \(\Delta AMB = \Delta DMC\) (c.g.c).

b) Vì \(\Delta AMB = \Delta DMC\) (chứng minh câu a)

Nên \[AB = CD\] (hai cạnh tương ứng) và \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)

Xét \(\Delta AHB\)\(\Delta DKC\) có:

\(\widehat {AHB} = \widehat {DKC} = 90^\circ ;\)

\[AB = CD\] (chứng minh trên);

\(\widehat {ABH} = \widehat {DCK}\) (do \(\widehat {ABM} = \widehat {DCM}\)).

Do đó \[\Delta AHB = \Delta DKC\](cạnh huyền – góc nhọn).

Suy ra \[BH = CK\] (hai cạnh tương ứng).

Khi đó \[BH + HK = CK + HK\] hay \[BK = CH\].

c) Xét \[\Delta AIB\]\[\Delta CIE\]có:

\[IA = IC\] (do \[I\] là trung điểm của \[AC\]);

\(\widehat {AIB} = \widehat {CIE}\) (hai góc đối đỉnh);

\[IB = IE\] (do \[I\] là trung điểm của \[BE\]).

Do đó \[\Delta AIB = \Delta CIE\] (c.g.c)

Suy ra \(\widehat {ABI} = \widehat {CEI}\) (hai góc tương ứng) và \[AB = CE\] (hai cạnh tương ứng).

Mà hai góc \(\widehat {ABI},\,\,\widehat {CEI}\) ở vị trí so le trong nên \[AB\,{\rm{//}}\,CE\].

Mặt khác \(\widehat {ABM} = \widehat {DCM}\) (chứng minh câu b) và hai góc này ở vị trí so le trong nên \[AB\,{\rm{//}}\,CD\].

Qua điểm \[C,\]\[CE\,{\rm{//}}\,AB\]\[CD\,{\rm{//}}\,AB\] nên theo tiên đề Euclid ta có \[CE\] trùng \[CD\].

Hay ba điểm \[E,{\rm{ }}C,{\rm{ }}D\] thẳng hàng.

Lại có \[CE = CD\] (cùng bằng \[AB\])

Từ đó suy ra \[C\] là trung điểm của \[DE\].

Lời giải

a) \(12:\frac{{ - 6}}{5} + \frac{1}{5} = 12.\frac{5}{{ - 6}} + \frac{1}{5} = - 10 + \frac{1}{5} = \frac{{ - 50}}{5} + \frac{1}{5} = \frac{{ - 49}}{5}\).

b) \(25.\left( { - \frac{4}{5}} \right) - 35.\left( { - \frac{4}{5}} \right)\)\[ = \frac{{ - 4}}{5}.\left( {25 - 35} \right)\]\[ = \frac{{ - 4}}{5}.\left( { - 10} \right) = 8\].

c) \(5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}.\sqrt {\frac{9}{4}} \)\( = 5:\frac{{25}}{4} + \frac{2}{{15}}.\sqrt {{{\left( {\frac{3}{2}} \right)}^2}} \)

\( = 5.\frac{4}{{25}} + \frac{2}{{15}}.\frac{3}{2}\)\( = \frac{4}{5} + \frac{1}{5}\)\( = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2;                        
B. 4;                        
C. 5;     
D. 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP