PHẦN II. TỰ LUẬN (7,0 điểm)
(1,5 điểm) Tính giá trị của các biểu thức sau (tính hợp lí nếu có thể):
a) \(12:\frac{{ - 6}}{5} + \frac{1}{5}\);
b) \(25.\left( { - \frac{4}{5}} \right) - 35.\left( { - \frac{4}{5}} \right)\);
c) \(5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}.\sqrt {\frac{9}{4}} \).
PHẦN II. TỰ LUẬN (7,0 điểm)
(1,5 điểm) Tính giá trị của các biểu thức sau (tính hợp lí nếu có thể):
a) \(12:\frac{{ - 6}}{5} + \frac{1}{5}\);
b) \(25.\left( { - \frac{4}{5}} \right) - 35.\left( { - \frac{4}{5}} \right)\);
c) \(5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}.\sqrt {\frac{9}{4}} \).
Quảng cáo
Trả lời:
a) \(12:\frac{{ - 6}}{5} + \frac{1}{5} = 12.\frac{5}{{ - 6}} + \frac{1}{5} = - 10 + \frac{1}{5} = \frac{{ - 50}}{5} + \frac{1}{5} = \frac{{ - 49}}{5}\).
b) \(25.\left( { - \frac{4}{5}} \right) - 35.\left( { - \frac{4}{5}} \right)\)\[ = \frac{{ - 4}}{5}.\left( {25 - 35} \right)\]\[ = \frac{{ - 4}}{5}.\left( { - 10} \right) = 8\].
c) \(5:{\left( { - \frac{5}{2}} \right)^2} + \frac{2}{{15}}.\sqrt {\frac{9}{4}} \)\( = 5:\frac{{25}}{4} + \frac{2}{{15}}.\sqrt {{{\left( {\frac{3}{2}} \right)}^2}} \)
\( = 5.\frac{4}{{25}} + \frac{2}{{15}}.\frac{3}{2}\)\( = \frac{4}{5} + \frac{1}{5}\)\( = 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho tam giác \[ABC,\]lấy \[M\] là trung điểm (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/11-1763819910.png)
a) Xét \(\Delta AMB\) và \(\Delta DMC\) có:
\[MA = MD\] (giả thiết);
\(\widehat {AMB} = \widehat {DMC}\) (hai góc đối đỉnh);
\[MB = MC\] (do \[M\] là trung điểm của \[BC\]).
Vậy \(\Delta AMB = \Delta DMC\) (c.g.c).
b) Vì \(\Delta AMB = \Delta DMC\) (chứng minh câu a)
Nên \[AB = CD\] (hai cạnh tương ứng) và \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)
Xét \(\Delta AHB\) và \(\Delta DKC\) có:
\(\widehat {AHB} = \widehat {DKC} = 90^\circ ;\)
\[AB = CD\] (chứng minh trên);
\(\widehat {ABH} = \widehat {DCK}\) (do \(\widehat {ABM} = \widehat {DCM}\)).
Do đó \[\Delta AHB = \Delta DKC\](cạnh huyền – góc nhọn).
Suy ra \[BH = CK\] (hai cạnh tương ứng).
Khi đó \[BH + HK = CK + HK\] hay \[BK = CH\].
c) Xét \[\Delta AIB\] và \[\Delta CIE\]có:
\[IA = IC\] (do \[I\] là trung điểm của \[AC\]);
\(\widehat {AIB} = \widehat {CIE}\) (hai góc đối đỉnh);
\[IB = IE\] (do \[I\] là trung điểm của \[BE\]).
Do đó \[\Delta AIB = \Delta CIE\] (c.g.c)
Suy ra \(\widehat {ABI} = \widehat {CEI}\) (hai góc tương ứng) và \[AB = CE\] (hai cạnh tương ứng).
Mà hai góc \(\widehat {ABI},\,\,\widehat {CEI}\) ở vị trí so le trong nên \[AB\,{\rm{//}}\,CE\].
Mặt khác \(\widehat {ABM} = \widehat {DCM}\) (chứng minh câu b) và hai góc này ở vị trí so le trong nên \[AB\,{\rm{//}}\,CD\].
Qua điểm \[C,\] có \[CE\,{\rm{//}}\,AB\] và \[CD\,{\rm{//}}\,AB\] nên theo tiên đề Euclid ta có \[CE\] trùng \[CD\].
Hay ba điểm \[E,{\rm{ }}C,{\rm{ }}D\] thẳng hàng.
Lại có \[CE = CD\] (cùng bằng \[AB\])
Từ đó suy ra \[C\] là trung điểm của \[DE\].
Lời giải
Cân nặng theo pound của một người nặng 45 kg là:
\(45\,\,:\,\,0,45359237\, = 99,20801798\) (pound)
Với độ chính xác \[d = 0,05\], ta làm tròn kết quả đến hàng phần mười được \(99,2\) pound.
Khi đó một người nặng 45 kg thì nặng \(99,2\) pound.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
