Một người gửi \[100\] triệu đồng vào ngân hàng với lãi suất \[0,4\% /\] tháng. Biết rằng nếu không rút tiền ta khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được lập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau \[6\] tháng, người đó được lĩnh số tiền ( cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi xuất không thay đổi?
Quảng cáo
Trả lời:
Chọn C
Số tiền ( cả vốn ban đầu và lãi) sau 6 tháng gửi:
\(100.{\left( {1 + \frac{{0,4}}{{100}}} \right)^6} \approx 102424128\) đồng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
\[h\left( t \right) = 5 \Leftrightarrow 5\sin \left( {\frac{\pi }{5}t} \right) = 5 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 1 \Leftrightarrow \frac{\pi }{5}t = \frac{\pi }{2} + k2\pi \Leftrightarrow t = \frac{5}{2} + 10k,k \in \mathbb{Z}\].
Vậy 2 lần sóng đạt đỉnh cách nhau khoảng thời gian là \[\left( {\frac{5}{2} + 10.1} \right) - \left( {\frac{5}{2} + 10.0} \right) = 10\] giây.
Câu 2
Lời giải
Chọn D

Ta có \(M \in (\alpha ) \cap (SCD)\).
Hai mặt phẳng \((\alpha )\) và \((SCD)\) lần lượt chứa 2 đường thẳng \(AB\) và \(CD\) song song.
Suy ra \((\alpha ) \cap (SCD) = l\) với \(l\) đi qua \(M\) và \(l{\rm{ // }}AB{\rm{ // }}CD\).
Trong mặt phẳng \((SCD):l \cap SD = N\).
\( \Rightarrow (\alpha ) \cap (SAD) = AN\)
\( \Rightarrow \) Đường thẳng \(d\) trùng với \(AN\) với \[N \in SD:MN//AB\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.