Câu hỏi:

25/11/2025 57 Lưu

Cho tứ diện \(ABCD\). Gọi \({G_1}\)\({G_2}\) lần lượt là trọng tâm các tam giác \(BCD\)\(ACD\). Mệnh đề nào sau đây sai?

A. \({G_1}{G_2}{\rm{ // }}\left( {ABD} \right)\).                                                     
B. \({G_1}{G_2}\,{\rm{ // }}\left( {ABC} \right)\).                     
C. \(B{G_1}\), \(A{G_2}\)\(CD\) đồng quy.                           
D. \({G_1}{G_2}\, = \frac{2}{3}AB\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Theo giả thiết ta có: \(\frac{{{G_1}{G_2}}}{{AB}} = \frac{{M{G_1}}}{{MB}} = \frac{1}{3} \Rightarrow {G_1}{G_2} = \frac{1}{3}AB\).

Vậy mệnh đề D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\[h\left( t \right) = 5 \Leftrightarrow 5\sin \left( {\frac{\pi }{5}t} \right) = 5 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 1 \Leftrightarrow \frac{\pi }{5}t = \frac{\pi }{2} + k2\pi  \Leftrightarrow t = \frac{5}{2} + 10k,k \in \mathbb{Z}\].

Vậy 2 lần sóng đạt đỉnh cách nhau khoảng thời gian là \[\left( {\frac{5}{2} + 10.1} \right) - \left( {\frac{5}{2} + 10.0} \right) = 10\] giây.

Câu 2

A. \[\frac{{\sqrt {51} }}{3}\].                   
B. \[\frac{{\sqrt {31} }}{3}\].                        
C. \[\frac{{5\sqrt {51} }}{9}\].                      
D. \[\frac{{5\sqrt {51} }}{{144}}\].

Lời giải

Chọn C

Chọn C Diện tích hình thang cân \(IJM (ảnh 1)

Mặt phẳng \(\left( P \right)\) chứa \(IJ\) và song song với \(AB\)

Suy ra \(\left( P \right)\) cắt \(BD,BC\) lần lượt tại \(M,N\) sao cho

 \(IN{\rm{ // }}AB{\rm{ // }}JM\).

Thiết diện tạo bởi mặt phẳng \(\left( P \right)\) và tứ diện \(ABCD\) là tứ giác \(IJMN\).

Nhận xét: tứ giác \(IJMN\) là hình thang cân có 2 đáy \(IN{\rm{ //  }}JM\) và

\(IN = \frac{1}{2}AB = 2;{\rm{ }}JM = \frac{1}{3}AB = \frac{4}{3}\).

\(IJ = MN = \sqrt {B{M^2} + B{N^2} - 2BM.BN.\cos {{60}^0}}  = \frac{{2\sqrt {13} }}{3}\).

Ta có \[JH\] là đường cao của hình thang cân \(IJMN \Rightarrow JH = \sqrt {I{J^2} - I{H^2}}  = \sqrt {{{\left( {\frac{{14}}{3}} \right)}^2} - {{\left( {\frac{1}{3}} \right)}^2}}  = \frac{{\sqrt {51} }}{3}\)

Diện tích hình thang cân \(IJMN\): \({S_{IJMN}} = \frac{1}{2}\left( {JM + IN} \right)JH = \frac{{5\sqrt {51} }}{9}\)

Câu 3

A. Đường thẳng \(d\) qua \(A\) song song với \(BM\).
B. Đường thẳng \(d\) qua \(M\) song song với \(CD\).
C. Đường thẳng \(d\) trùng với \(MA\).
D. Đường thẳng \(d\) trùng với \(AN\) với \[N \in SD:MN//AB\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\alpha = 30^\circ .\)                           
B. \(\alpha = 60^\circ .\)              
C. \(\alpha = 150^\circ .\)                               
D. \(\alpha = 120^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({x_1} = - 1,q = - 3\)hoặc \({x_1} = 1,q = 3.\)                             
B. \({x_1} = - 1,q = 3\) hoặc \({x_1} = 1,q = - 3.\)
C. \({x_1} = 3,q = - 1\) hoặc \({x_1} = - 3,q = 1.\)                            
D. \({x_1} = 3,q = 1\) hoặc \({x_1} = - 3,q = - 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\).                      
B. \(4\).                    
C. \(6\).                           
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2.\)                      
B. \(5.\)                    
C. \(3.\)                          
D. \(1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP