Câu hỏi:

26/11/2025 72 Lưu

Cánh tay robot đặt trên mặt đất và có vị trí như hình vẽ bên. Tính độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất (làm tròn kết quả đến hàng phần mười của cm).
Cánh tay robot đặt trên mặt đất và có vị trí như hình vẽ bên. Tính độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất (làm tròn kết quả đến hàng phần mười của cm). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét \(\Delta BCN\) vuông tại \(N,\) ta có:

\(BN = BC \cdot \sin \widehat {BCN} = 60 \cdot \sin 32^\circ  \approx 31,80{\rm{\;(cm)}}{\rm{.}}\)

Ta thấy \(NC\) và \(BM\) là các đoạn thẳng nằm trên phương ngang nên \(NC\,{\rm{//}}\,BM,\) suy ra \(\widehat {CBM} = \widehat {BCN} = 32^\circ \) (so le trong).

Khi đó, \(\widehat {ABM} = \widehat {ABC} - \widehat {CBM} = 53^\circ  - 32^\circ  = 21^\circ \).

Xét \(\Delta ABM\) vuông tại \(M\), ta có:

\(AM = AB \cdot \sin \widehat {ABM} = 60 \cdot \sin 21^\circ  \approx 21,50\) (cm).

Vậy, độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất là:

\(AM + BN + CP \approx 21,50 + 31,80 + 17 = 70,3\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 12 tháng là \(5\% /\)năm. Bà Hoa dự định gửi một khoản tiền vào ngân hàng này để có số tiền lãi hàng năm ít nhất là 20 triệu đồng.

a) Gọi \(x\) (triệu đồng) là số tiền mà bà Hoa cần gửi tiết kiệm. Hãy viết bất phương trình phù hợp với dữ liệu đề bài.

b) Hỏi số tiền mà bà Hoa cần gửi tiết kiệm ít nhất là bao nhiêu?

Lời giải

a) Số tiền lãi bà Hoa thu được trong một năm là \(0,05x\) (triệu đồng).

Để có được số tiền lãi ít nhất là \(20\) triệu đồng/năm thì cần có: \(0,05x \ge 20\).

Vậy bất phương trình cần tìm là: \(0,05x \ge 20\).

b) Giải bất phương trình:

\(0,05x \ge 20\)

\(x \ge 400.\)

Vậy bà Hoa cần gửi ngân hàng ít nhất là \(400\) triệu đồng.

Lời giải

a) Xét \(\Delta ABD\) vuông tại \(A,\) ta có:

\[\sin \widehat {ABD} = \frac{{AD}}{{BD}};\,\,\cos \widehat {ABD} = \frac{{AB}}{{BD}};\]

\[\tan \widehat {ABD} = \frac{{AD}}{{AB}},\,\,\cot \widehat {ABD} = \frac{{AB}}{{AD}}.\]

Cho tam giác \(ABC\) vuông tại \(A\). Tia phân giác của góc \(B\) cắt \(AC\) tại \(D.\) (ảnh 1)

b) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore, ta có:

\(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25,\) suy ra \(BC = 5{\rm{\;cm}}.\)

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(\tan B = \frac{{AC}}{{AB}} = \frac{4}{3},\) suy ra \(\widehat {B\,} \approx 53^\circ 8'.\)

Vì \(BD\) là tia phân giác của \(\widehat {ABC}\) nên ta có \(\widehat {ABD} = \frac{1}{2}\widehat {ABC} \approx \frac{1}{2} \cdot 53^\circ 8' \approx 26^\circ 34'.\)

Theo câu a, \[\cos \widehat {ABD} = \frac{{AB}}{{BD}},\] suy ra \[BD = \frac{{AB}}{{\cos \widehat {ABD}}} \approx \frac{3}{{\cos 26^\circ 34'}} \approx 3,35{\rm{\;(cm)}}{\rm{.}}\]

c) Xét \(\Delta ABD\) vuông tại \(A,\) ta có: \[\tan \widehat {ABD} = \frac{{AD}}{{AB}}.\,\,\,\left( 1 \right)\]

Do \(BD\) là tia phân giác của \(\widehat {ABC}\) nên ta có \(\frac{{AD}}{{AB}} = \frac{{DC}}{{BC}}\) (tính chất tia phân giác của một góc)

Từ đó, theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{{AD}}{{AB}} = \frac{{DC}}{{BC}} = \frac{{AD + DC}}{{AB + BC}} = \frac{{AC}}{{AB + BC}}.\,\,\,\left( 2 \right)\) 

Từ (1) và (2) ta có \[\tan \widehat {ABD} = \frac{{AC}}{{AB + BC}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP