Câu hỏi:

25/11/2025 45 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành như hình vẽ.

 Cho hình chóp S.ABCD có đáy là hình bình hành như hình vẽ. (ảnh 1)

Giao điểm của đường thẳng \(BD\) và mặt phẳng \(\left( {SAC} \right)\)

A. trung điểm của đoạn \(AC\).                 
B. điểm \(D\).
C. không tồn tại.                                        
D. điểm \(B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD có đáy là hình bình hành như hình vẽ. (ảnh 2)

Gọi \(O = BD \cap AC\).

Ta có: \(\left\{ \begin{array}{l}BD \cap AC = O\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow BD \cap \left( {SAC} \right) = O\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

   Ta có hình vẽ, với Q là trung (ảnh 1)

Ta có hình vẽ, với Q là trung điểm SC. Hạ GR song song với BH.

Suy ra H là trọng tâm tam giác SMQ. Khi đó \(\frac{{SI}}{{SG}} = \frac{{SH}}{{SR}} = \frac{{\frac{2}{6}SE}}{{\frac{8}{9}SE}} = \frac{3}{8} \Rightarrow a = 3,b = 8\).

Do đó \(a + b = 11.\)

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. (ảnh 1)

a)Xét hai mp phân biệt \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\)có

+ S là một điểm chung.

+ Trong mp (ABCD) : AC cắt BD tại I, dễ thấy I là điểm chung thứ 2.

Vậy \(\left( {SAC} \right)\)  \( \cap \left( {SBD} \right) = SI.\)

b) Xét hai mp phân biệt \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) có

+ S là một điểm chung.

    + AD//BC, \(AD \subset \left( {SAD} \right),BC \subset \left( {SBC} \right)\)

  Vậy \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\)cắt nhau theo giao tuyến là 1 đường thẳng qua S và song song với AD ( hoặc //BC).

c)Theo a) \(\left( {SAC} \right)\) \( \cap \left( {SBD} \right) = SI.\)

Trong mp (SBD) : BM cắt SI tại K

Dễ thấy K là giao điểm của BM với  (SAC)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 3                            
B. 2                          
C. 4                                
D. 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = 1 + \sin x\].  
B. \[y = \sin x\].      
C. \[y = 1 - \sin x\].                      
D. \[y = \cos x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP