Câu hỏi:

25/11/2025 12 Lưu

Cho hàm số \(f\left( x \right) = \cos 2x + 3\sin x + 3\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right]\). Biểu thức \(8M + m\) bằng

A. 45.                         
B. 47.                       
C. 46.                             
D. 48.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

\(f\left( x \right) = \cos 2x + 3\sin x + 3 = 1 - 2{\sin ^2}x + 3\sin x + 3 =  - 2{\sin ^2}x + 3\sin x + 4\).

Đặt : \(t = \sin x\). Khi đó \(x \in \left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right] \Rightarrow t \in \left[ {\frac{1}{2};1} \right]\).

Do đó GTNN và GTLN của hàm số đã cho bằng GTNN, GTLN của hàm số \(f\left( t \right) =  - 2{t^2} + 3t + 4\) trên đoạn \(\left[ {\frac{1}{2};1} \right]\).

Ta có BBT trên đoạn \(\left[ {\frac{1}{2};1} \right]\)của hàm số \(f\left( t \right) =  - 2{t^2} + 3t + 4\).

Chọn D  Phương trình: \(\cot \left( {x + \fra (ảnh 1)

Suy ra \(M = \frac{{41}}{8},m = 5\), do đó \(8M + m = 8.\frac{{41}}{8} + 5 = 46\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 3                            
B. 2                          
C. 4                                
D. 1

Lời giải

Chọn A

Phương trình \(\sin 2x = m - 2\)  có nghiệm khi \( - 1 \le m - 2 \le 1 \Leftrightarrow 1 \le m \le 2,m\in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3} \right\}\).

Có 3 giá trị cần tìm.

Lời giải

Biến đổi \(y\,\, = \,1 - {\sin ^2}x + 2\sin x + 2 =  - {\sin ^2}x + 2\sin x + 3\).

Đặt \(t\, = \,\sin x\) với \(t \in \left[ { - 1;1} \right]\)Ta được hàm số \(y\,\, = \, - {t^2} + 2t + 3\).

Lập bảng biến thiên của hàm số \(y\,\, = \, - {t^2} + 2t + 3\) trên \(t \in \left[ { - 1;1} \right]\).

Kết luận \(Maxy = 4\) khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \).

\(Min\,y = 0\) khi \(\sin x =  - 1 \Leftrightarrow x =  - \frac{\pi }{2} + k2\pi \).

Câu 3

A. \(3\).                      
B. \( - 5\).                 
C. \( - 3\).                             
D. \(5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP