Cho hàm số \(f\left( x \right) = \cos 2x + 3\sin x + 3\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right]\). Biểu thức \(8M + m\) bằng
Quảng cáo
Trả lời:
Chọn C
\(f\left( x \right) = \cos 2x + 3\sin x + 3 = 1 - 2{\sin ^2}x + 3\sin x + 3 = - 2{\sin ^2}x + 3\sin x + 4\).
Đặt : \(t = \sin x\). Khi đó \(x \in \left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right] \Rightarrow t \in \left[ {\frac{1}{2};1} \right]\).
Do đó GTNN và GTLN của hàm số đã cho bằng GTNN, GTLN của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\) trên đoạn \(\left[ {\frac{1}{2};1} \right]\).
Ta có BBT trên đoạn \(\left[ {\frac{1}{2};1} \right]\)của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\).

Suy ra \(M = \frac{{41}}{8},m = 5\), do đó \(8M + m = 8.\frac{{41}}{8} + 5 = 46\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B

Ta có hình vẽ, với Q là trung điểm SC. Hạ GR song song với BH.
Suy ra H là trọng tâm tam giác SMQ. Khi đó \(\frac{{SI}}{{SG}} = \frac{{SH}}{{SR}} = \frac{{\frac{2}{6}SE}}{{\frac{8}{9}SE}} = \frac{3}{8} \Rightarrow a = 3,b = 8\).
Do đó \(a + b = 11.\)
Lời giải

a)Xét hai mp phân biệt \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\)có
+ S là một điểm chung.
+ Trong mp (ABCD) : AC cắt BD tại I, dễ thấy I là điểm chung thứ 2.
Vậy \(\left( {SAC} \right)\) \( \cap \left( {SBD} \right) = SI.\)
b) Xét hai mp phân biệt \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) có
+ S là một điểm chung.
+ AD//BC, \(AD \subset \left( {SAD} \right),BC \subset \left( {SBC} \right)\)
Vậy \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\)cắt nhau theo giao tuyến là 1 đường thẳng qua S và song song với AD ( hoặc //BC).
c)Theo a) \(\left( {SAC} \right)\) \( \cap \left( {SBD} \right) = SI.\)
Trong mp (SBD) : BM cắt SI tại K
Dễ thấy K là giao điểm của BM với (SAC)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
