Cho hàm số \(f\left( x \right) = \cos 2x + 3\sin x + 3\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right]\). Biểu thức \(8M + m\) bằng
Quảng cáo
Trả lời:
Chọn C
\(f\left( x \right) = \cos 2x + 3\sin x + 3 = 1 - 2{\sin ^2}x + 3\sin x + 3 = - 2{\sin ^2}x + 3\sin x + 4\).
Đặt : \(t = \sin x\). Khi đó \(x \in \left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right] \Rightarrow t \in \left[ {\frac{1}{2};1} \right]\).
Do đó GTNN và GTLN của hàm số đã cho bằng GTNN, GTLN của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\) trên đoạn \(\left[ {\frac{1}{2};1} \right]\).
Ta có BBT trên đoạn \(\left[ {\frac{1}{2};1} \right]\)của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\).

Suy ra \(M = \frac{{41}}{8},m = 5\), do đó \(8M + m = 8.\frac{{41}}{8} + 5 = 46\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \(\sin 2x = m - 2\) có nghiệm khi \( - 1 \le m - 2 \le 1 \Leftrightarrow 1 \le m \le 2,m\in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3} \right\}\).
Có 3 giá trị cần tìm.
Lời giải
Biến đổi \(y\,\, = \,1 - {\sin ^2}x + 2\sin x + 2 = - {\sin ^2}x + 2\sin x + 3\).
Đặt \(t\, = \,\sin x\) với \(t \in \left[ { - 1;1} \right]\)Ta được hàm số \(y\,\, = \, - {t^2} + 2t + 3\).
Lập bảng biến thiên của hàm số \(y\,\, = \, - {t^2} + 2t + 3\) trên \(t \in \left[ { - 1;1} \right]\).
Kết luận \(Maxy = 4\) khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \).
\(Min\,y = 0\) khi \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.