Câu hỏi:

26/11/2025 44 Lưu

Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình: \(x\left( t \right) = 2\cos \left( {5t - \frac{\pi }{6}} \right)\), \(t\) tính bằng giây \(\left( {t \ge 0} \right)\)\(x\) tính bằng centimet. Hỏi trong khoảng thời gian từ \(0\) đến \(6\) giây, vật đi qua vị trí cân bằng (vị trí mà \(x = 0\)) bao nhiêu lần?

A. \[9\]. 
B. \[3\]. 
C. \[4\]. 
D. \(8\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Vị trí cân bằng của vật dao động điều hoà là vị trí vật đứng yên, khi đó \(x = 0\)

Ta có \(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)

\[\begin{array}{l} \Leftrightarrow 2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\end{array}\]

Trong khoảng thời gian từ \(0\) đến \(6\) giây, tức là \(0 \le t \le 6\) hay \[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\]

\[\begin{array}{l} \Leftrightarrow  - \frac{{2\pi }}{{15}} \le k\frac{\pi }{5} \le 6 - \frac{{2\pi }}{{15}}\\ \Leftrightarrow  - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\end{array}\]

Vì \[k \in \mathbb{Z}\] nên \[k = \left\{ {0;1;2;3;4;5;6;7;8} \right\}\]. Vậy vật đi qua vị trí cân bằng \[9\] lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Gọi \(M\) là trung điểm của \(BC\). Chọn m (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\). Chọn mặt phẳng \(\left( {SBM} \right) \supset BG\)

Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(I = BM \cap AC\) . Khi đó, \(\left( {SBM} \right) \cap \left( {SAC} \right) = SI\).

Trong mặt phẳng \(\left( {SBM} \right)\), \(H = BG \cap SI\).

Ta có: \(H \in SI\) mà \(SI \in \left( {SAC} \right)\) suy ra \(H \in \left( {SAC} \right)\)

         \(H \in BG\)

Vậy \(H \in BG \cap \left( {SAC} \right)\).

Gọi \(N\) là trung điểm của \(AD\), suy ra \(MN\) là đường trung bình trong \(\Delta ACD\), suy ra \(MN\parallel AC\)

Ta có \(BC\parallel AN,BC = AN\) nên tứ giác \(ABCN\) là hình bình hành

Gọi \(J = AC \cap BN\), suy ra \(J\) là trung điểm của \(BN\).

Trong \(\Delta BMN\), ta có \(MN\parallel IJ\) và \(J\) là trung điểm của \(BM\) nên \(IB = IM\).

Trong mặt phẳng \(\left( {SBM} \right)\), kẻ \(GK\parallel SI\) với \(K \in BM\)

Xét \(\Delta SMI\), ta có \(GK\parallel SI\) nên \(\frac{{IM}}{{IK}} = \frac{{SM}}{{SG}} = \frac{3}{2}\)

Xét \(\Delta BGK\), ta có \(GK\parallel IH\) nên \(\frac{{HB}}{{HG}} = \frac{{BI}}{{IK}} = \frac{{IM}}{{IK}} = \frac{3}{2}\) (do \(IM = IK\)).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \ (ảnh 1)

a. Ta có:\(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\)

\(\left. {\begin{array}{*{20}{c}}{O \in AC \Rightarrow O \in \left( {SAC} \right)}\\{O \in BD \Rightarrow O \in \left( {SBD} \right)}\end{array}} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).   Vậy: \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\).

b. Ta có: \(\left. {\begin{array}{*{20}{c}}{M \in \left( {ABM} \right) \cap \left( {SCD} \right)}\\{AB\parallel CD}\\{AB \subset \left( {ABM} \right),CD \subset \left( {SCD} \right)}\\{\left( {ABM} \right) \cap \left( {SCD} \right) = {M_t}}\end{array}} \right\} \Rightarrow {M_t}\parallel AB\parallel CD\)

Trong \(\left( {SCD} \right)\) kẻ đường thẳng đi qua M, song song với \(CD\) và cắt \(SD\)tại \(N\).

Vậy: \(\left( {ABM} \right) \cap \left( {SCD} \right) = MN\).

c. Gọi \(O = AC \cap BD\), \(I = AM \cap SO\).

Trong mặt phẳng \(\left( {SBD} \right)\), kéo dài \(GI\) cắt \(SD\) tại \(K\)\( \Rightarrow K = SD \cap \left( {AMG} \right)\).

Tam giác \(SAC\) có \(SO\) và \(AM\) là hai đường trung tuyến.

Suy ra \(I\) là trọng tâm của tam giác \(SAC\) nên ta có \(\frac{{OI}}{{{\rm{O}}S}} = \frac{1}{3}\). (1)

Mặt khác, \(G\) là trọng tâm tam giác \(ABC\) nên có \(\frac{{OG}}{{OB}} = \frac{1}{3}\). (2)

Từ (1) và (2) suy ra \(\frac{{OI}}{{OS}} = \frac{{OG}}{{OB}}\)\( \Rightarrow GI{\rm{ // }}SB\)\( \Rightarrow GK{\rm{ // }}SB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\sin 2\alpha = 2\sin \alpha .\cos \alpha .\] 
B. \[\cos 2\alpha = 1 - 2{\sin ^2}\alpha .\] 
C. \[\sin 2\alpha = \sin \alpha \cos \alpha .\] 
D.\[\cos 2\alpha = 2{\cos ^2}\alpha - 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {AMN} \right) \cap \left( {BCD} \right) = PQ.\) 
B. \(\left( {AMN} \right) \cap \left( {ABC} \right) = AE.\) 
C. \(\left( {AMN} \right) \cap \left( {ABD} \right) = AP.\) 
D. \(\left( {AMN} \right) \cap \left( {ABD} \right) = AE.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP