(0,5 điểm) Giả sử một con tàu vũ trụ được phóng lên từ mũi Ca-na-vơ-ran (Canaveral) ở Mỹ. Nó chuyển động theo một quỹ đạo được mô tả trên một bản đồ phẳng (quanh đường xích đạo) của mặt đất như hình vẽ: điểm \(M\) mô tả cho con tàu, đường thẳng \(\Delta \) mô tả cho đường xích đạo. Khoảng cách \(h\) (kilômet) từ \(M\) đến \(\Delta \) được tính theo công thức \(h = \left| d \right|\), trong đó \(d = 4\,000\,\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right]\), với \(t\) (phút) là thời gian trôi qua kể từ khi con tàu đi vào quỹ đạo, \(d > 0\) nếu \(M\) ở phía trên \(\Delta \), \(d < 0\) nếu \(M\) ở phía dưới \(\Delta \).

Tìm thời điểm sớm nhất sau khi còn tàu đi vào quỹ đạo để có \(d = 2\,000\).

Tìm thời điểm sớm nhất sau khi còn tàu đi vào quỹ đạo để có \(d = 2\,000\).
Quảng cáo
Trả lời:
Khi \(d = 2\,000\) thì \(2\,000 = 4\,000\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right]\)\( \Leftrightarrow \cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right] = \frac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{45}}\left( {t - 10} \right) = \frac{\pi }{3} + k2\pi \\\frac{\pi }{{45}}\left( {t - 10} \right) = - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}t = 25 + 90k\\t = - 5 + 90k\end{array} \right.\)
Thời điểm sớm nhất ứng với \(t\) dương nhỏ nhất là 25 phút.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B

Gọi \(M\) là trung điểm của \(BC\). Chọn mặt phẳng \(\left( {SBM} \right) \supset BG\)
Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(I = BM \cap AC\) . Khi đó, \(\left( {SBM} \right) \cap \left( {SAC} \right) = SI\).
Trong mặt phẳng \(\left( {SBM} \right)\), \(H = BG \cap SI\).
Ta có: \(H \in SI\) mà \(SI \in \left( {SAC} \right)\) suy ra \(H \in \left( {SAC} \right)\)
\(H \in BG\)
Vậy \(H \in BG \cap \left( {SAC} \right)\).
Gọi \(N\) là trung điểm của \(AD\), suy ra \(MN\) là đường trung bình trong \(\Delta ACD\), suy ra \(MN\parallel AC\)
Ta có \(BC\parallel AN,BC = AN\) nên tứ giác \(ABCN\) là hình bình hành
Gọi \(J = AC \cap BN\), suy ra \(J\) là trung điểm của \(BN\).
Trong \(\Delta BMN\), ta có \(MN\parallel IJ\) và \(J\) là trung điểm của \(BM\) nên \(IB = IM\).
Trong mặt phẳng \(\left( {SBM} \right)\), kẻ \(GK\parallel SI\) với \(K \in BM\)
Xét \(\Delta SMI\), ta có \(GK\parallel SI\) nên \(\frac{{IM}}{{IK}} = \frac{{SM}}{{SG}} = \frac{3}{2}\)
Xét \(\Delta BGK\), ta có \(GK\parallel IH\) nên \(\frac{{HB}}{{HG}} = \frac{{BI}}{{IK}} = \frac{{IM}}{{IK}} = \frac{3}{2}\) (do \(IM = IK\)).
Lời giải

a. Ta có:\(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\)
\(\left. {\begin{array}{*{20}{c}}{O \in AC \Rightarrow O \in \left( {SAC} \right)}\\{O \in BD \Rightarrow O \in \left( {SBD} \right)}\end{array}} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\). Vậy: \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\).
b. Ta có: \(\left. {\begin{array}{*{20}{c}}{M \in \left( {ABM} \right) \cap \left( {SCD} \right)}\\{AB\parallel CD}\\{AB \subset \left( {ABM} \right),CD \subset \left( {SCD} \right)}\\{\left( {ABM} \right) \cap \left( {SCD} \right) = {M_t}}\end{array}} \right\} \Rightarrow {M_t}\parallel AB\parallel CD\)
Trong \(\left( {SCD} \right)\) kẻ đường thẳng đi qua M, song song với \(CD\) và cắt \(SD\)tại \(N\).
Vậy: \(\left( {ABM} \right) \cap \left( {SCD} \right) = MN\).
c. Gọi \(O = AC \cap BD\), \(I = AM \cap SO\).
Trong mặt phẳng \(\left( {SBD} \right)\), kéo dài \(GI\) cắt \(SD\) tại \(K\)\( \Rightarrow K = SD \cap \left( {AMG} \right)\).
Tam giác \(SAC\) có \(SO\) và \(AM\) là hai đường trung tuyến.
Suy ra \(I\) là trọng tâm của tam giác \(SAC\) nên ta có \(\frac{{OI}}{{{\rm{O}}S}} = \frac{1}{3}\). (1)
Mặt khác, \(G\) là trọng tâm tam giác \(ABC\) nên có \(\frac{{OG}}{{OB}} = \frac{1}{3}\). (2)
Từ (1) và (2) suy ra \(\frac{{OI}}{{OS}} = \frac{{OG}}{{OB}}\)\( \Rightarrow GI{\rm{ // }}SB\)\( \Rightarrow GK{\rm{ // }}SB\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.