Câu hỏi:

27/11/2025 892 Lưu

Một vận động viên bắn súng nằm trên mặt đất ở vị trí \(A\) để ngắm các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng mục tiêu \(B\) cách mặt đất \(40m\) tại góc ngắm \(\alpha \) (góc hợp bởi phương bắn với phương ngang). Nếu tăng góc ngắm đó lên \(2\) lần thì vận động viên bắn trúng mục tiêu \(C\) cách mặt đất \(90m\) (hình vẽ). Khoảng cách từ vận động viên đến bức tường là                                                 
Chọn D  Đặt: \(AH = x\). Điều  ki (ảnh 1)

A. \[100m.\]                
B. \[90m.\]              
C. \[130m.\]                                 
D. \[120m.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Đặt: \(AH = x\). Điều  kiện:  \(0 < x \ne 40\).                                

Xét tam giác \(ACH\) vuông tại \(H\), có: \(\tan 2\alpha  = \frac{{HC}}{{AH}} = \frac{{90}}{x}\).

Xét tam giác \(ABH\) vuông tại \(H\), có: \(\tan \alpha  = \frac{{HB}}{{AH}} = \frac{{40}}{x}\).

Ta có: \(\tan 2\alpha  = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}\)\( \Leftrightarrow \frac{{90}}{x} = \frac{{2 \cdot \frac{{40}}{x}}}{{1 - \frac{{1600}}{{{x^2}}}}}\)\( \Leftrightarrow \frac{{90}}{x} = \frac{{\frac{{80}}{x}}}{{\frac{{{x^2} - 1600}}{{{x^2}}}}}\)\( \Leftrightarrow \frac{{90}}{x} = \frac{{80x}}{{{x^2} - 1600}}\)

            \( \Leftrightarrow 9\left( {{x^2} - 1600} \right) = 8{x^2}\)\( \Leftrightarrow {x^2} = 14400 \Leftrightarrow x = 120.\)

            Khoảng cách từ vận động viên đến bức tường là: \(AH = 120m\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tứ giác \[MNPQ\] là hình bình hành.                                
B. Tứ giác \[MNPQ\] là hình vuông.       
C. Tứ giác \[MNPQ\] là hình chữ nhật.      
D. Tứ giác \[MNPQ\] là hình thang.

Lời giải

Chọn D

Chọn D  Ta có: \(\cos \alpha \)\[ = \cos \ (ảnh 1)

Gọi \(E,F\) lần lượt là trung điểm của \(AD,AB\).

Ta có: \(\frac{{SM}}{{SE}} = \frac{{SN}}{{SF}} = \frac{2}{3}\)  nên \[MN{\rm{//}}EF\] mà \(EF\) là đường trung bình tam giác \(ABD\) nên \(EF{\rm{//}}BD\).

Do đó \(MN{\rm{//}}BD\).

  Hai mp \(\left( {IMN} \right)\) và \(\left( {ABCD} \right)\) có điểm \(I\) chung và lần lượt chứa hai đường thẳng song song \(MN\)

  và \(BD\) nên giao tuyến qua điểm \(I\) và song song với \(MN,BD\). Giao tuyến này cắt \(CD,AB,AD\)

  lần lượt tại \(J,H,K\). Suy ra \(P = SB \cap NH,Q = SD \cap MK\).

  Ta có: \(\left\{ \begin{array}{l}\left( {IMN} \right) \cap \left( {SBD} \right) = PQ\\\left( {IMN} \right) \cap \left( {ABCD} \right) = IJ\\\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\end{array} \right.\) mà \(IJ{\rm{//}}BD\) nên \(PQ{\rm{//}}IJ{\rm{//}}BD\).

  Mặt khác, \(NP\) không song song với \(MQ\) nên tứ giác \(MNPQ\) là hình thang.

Câu 2

A. \[4.\]                        
B. \[3.\]                    
C. \[2.\]    
D. \[1.\]

Lời giải

Chọn C

              Ta có\(\,\left\{ \begin{array}{l}\le (ảnh 1)

          \(\cos x - 2m + 3 = 0 \Leftrightarrow \cos x = 2m - 3\).

             Dựa vào đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - 4\pi ;4\pi } \right]\), ta thấy để phương trình có 4 nghiệm thì:

            \(\left[ \begin{array}{l}2m - 3 =  - 1\\2m - 3 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\).

            Vậy có 2 giá trị nguyên của tham số \(m\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP