Câu hỏi:

01/12/2025 40 Lưu

Cho tứ diện \(ABCD.\) Gọi M, N lần lượt là trung điểm của BDBC, \(I,J\) lần lượt là trọng tâm các tam giác \(ABC\)\(ABD.\) Chọn khẳng định đúng trong các khẳng định sau?

A. \(IJ\) cắt\(AB.\)                      
B. \(IJ\) chéo \(CD.\)
C. \(IJ\) song song với \(CD.\)   
D. \(IJ\) song song với \(AB.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(I,J\) lần lượt là trọng tâm các tam giác \(ABC\)\(ABD.\)

Nên

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BD và BC (ảnh 1)

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BD và BC (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có

\[\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2(x + \sqrt 3 )({x^2} - x\sqrt 3 + {{\sqrt 3 }^2})}}{{(\sqrt 3 - x).(\sqrt 3 + x)}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } 2\frac{{{x^2} - x\sqrt 3 + {{\sqrt 3 }^2}}}{{\sqrt 3 - x}} = 3\sqrt 3 = a\sqrt 3 + b.\]

\( \Rightarrow {a^2} + {b^2} = {3^2} = 9\)

Câu 2

A. \[S = \sqrt 2 + 1.\]                 
B. \(S = 2\sqrt 2 .\)     
C. \(S = \frac{1}{2}.\)  
D. \(S = 2.\)

Lời giải

Chọn B

Ta có \[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots \] là tổng của cấp số nhân lùi vô hạn với \({u_1} = 1\); \(q = \frac{1}{2}\) nên

\[S = \sqrt 2 \left( {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots } \right) = \sqrt 2 \frac{{{u_1}({q^n} - 1)}}{{q - 1}} = \sqrt 2 \frac{{1({{\left( {\frac{1}{2}} \right)}^n} - 1)}}{{\frac{1}{2} - 1}} = 2\sqrt 2 ;(q \ne 1)\]

Câu 3

A. \[a = 6\].            
B. \[a = 9\].    
C. \[a = 4\].    
D. \[a = 8\].       

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số liên tục trên khoảng\[\left( {1;\,\, + \infty } \right)\]
B. Hàm số liên tục trên khoảng\[\left( {1;\,\,4} \right)\]
C. Hàm số liên tục trên \[\mathbb{R}\]
D. Hàm số liên tục trên khoảng\[\left( { - \infty ;\,\,4} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0.\)                                        
B. \(1.\)                        
C. \( + \infty .\)           
D. \( - \infty .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right)\) không liên tục tại \(x = 0.\)           
B. \(f\left( x \right)\) liên tục trên \[\left( { - \infty ;\,\,1} \right)\].
C. \(f\left( x \right)\) liên tục trên \(\mathbb{R}.\)                                             
D. \(f\left( x \right)\) liên tục tại \(x = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{3}{2}.\)  
B. \(1.\)                        
C. \( - 2.\)                    
D. \(0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP