Câu hỏi:

01/12/2025 40 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right).\)Khẳng định nào sau đây đúng?

A. \(d\) qua \(S\) và song song với \(BD.\)                      
B. \(d\) qua \(S\) và song song với \(AB.\)
C. \(d\) qua \(S\) và song song với \(BC.\)                      
D. \(d\) qua \(S\) và song song với \(DC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\)\(d\) qua \(S\) và song song với \(BC.\)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có

\[\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2(x + \sqrt 3 )({x^2} - x\sqrt 3 + {{\sqrt 3 }^2})}}{{(\sqrt 3 - x).(\sqrt 3 + x)}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } 2\frac{{{x^2} - x\sqrt 3 + {{\sqrt 3 }^2}}}{{\sqrt 3 - x}} = 3\sqrt 3 = a\sqrt 3 + b.\]

\( \Rightarrow {a^2} + {b^2} = {3^2} = 9\)

Câu 2

A. \[S = \sqrt 2 + 1.\]                 
B. \(S = 2\sqrt 2 .\)     
C. \(S = \frac{1}{2}.\)  
D. \(S = 2.\)

Lời giải

Chọn B

Ta có \[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots \] là tổng của cấp số nhân lùi vô hạn với \({u_1} = 1\); \(q = \frac{1}{2}\) nên

\[S = \sqrt 2 \left( {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots } \right) = \sqrt 2 \frac{{{u_1}({q^n} - 1)}}{{q - 1}} = \sqrt 2 \frac{{1({{\left( {\frac{1}{2}} \right)}^n} - 1)}}{{\frac{1}{2} - 1}} = 2\sqrt 2 ;(q \ne 1)\]

Câu 3

A. \[a = 6\].            
B. \[a = 9\].    
C. \[a = 4\].    
D. \[a = 8\].       

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số liên tục trên khoảng\[\left( {1;\,\, + \infty } \right)\]
B. Hàm số liên tục trên khoảng\[\left( {1;\,\,4} \right)\]
C. Hàm số liên tục trên \[\mathbb{R}\]
D. Hàm số liên tục trên khoảng\[\left( { - \infty ;\,\,4} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0.\)                                        
B. \(1.\)                        
C. \( + \infty .\)           
D. \( - \infty .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right)\) không liên tục tại \(x = 0.\)           
B. \(f\left( x \right)\) liên tục trên \[\left( { - \infty ;\,\,1} \right)\].
C. \(f\left( x \right)\) liên tục trên \(\mathbb{R}.\)                                             
D. \(f\left( x \right)\) liên tục tại \(x = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{3}{2}.\)  
B. \(1.\)                        
C. \( - 2.\)                    
D. \(0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP