Khi thống kê chiều cao của học sinh khối 12 trong một trường trung học, ta thu được mẫu số liệu ghép nhóm sau:
Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là
Khi thống kê chiều cao của học sinh khối 12 trong một trường trung học, ta thu được mẫu số liệu ghép nhóm sau:

Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là
Quảng cáo
Trả lời:
Chọn C
Nhóm \(\left[ {162\,;\,168} \right)\) có nhiều học sinh nhất nên là nhóm chứa mốt của mẫu số liệu
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D

Gọi \(K = \left( P \right) \cap BD\), \(L = \left( P \right) \cap BC\), \(E = \left( P \right) \cap CD\).
Vì \(\left( P \right)\,\,//\,AB\) nên \(IL\,//\,AB\), \(JK\,//\,AB\). Do đó \(IJKL\) hình thang và \(L\) là trung điểm cạnh \(BC\), nên ta có \(\frac{{KD}}{{KB}} = \frac{{JD}}{{JA}} = \frac{1}{2}\).
Xét tam giác \(ACD\) có \(I\), \(J\), \(E\) thẳng hàng. Áp dụng định lí Mê-nê-la-uýt ta có:
\(\frac{{ED}}{{EC}}.\frac{{IC}}{{IA}}.\frac{{JA}}{{JD}} = 1 \Rightarrow \frac{{ED}}{{EC}} = \frac{1}{2} \Rightarrow D\) là trung điểm \(EC\).
Dễ thấy hai tam giác \(ECI\) và \(ECL\) bằng nhau theo trường hợp c-g-c.
Áp dụng định lí cosin cho tam giác \(ICE\) ta có:
\(E{I^2} = E{C^2} + I{C^2} - 2EC.IC.\cos 60^\circ = \frac{{13{a^2}}}{4}\)\( \Rightarrow EL = EI = \frac{{a\sqrt {13} }}{2}\).
Áp dụng công thức Hê-rông cho tam giác \(ELI\) ta có: \({S_{ELI}} = \sqrt {p{{\left( {p - x} \right)}^2}\left( {p - y} \right)} = \frac{{\sqrt {51} }}{{16}}{a^2}\)
Với \(p = \frac{{EI + EL + IL}}{2} = \frac{{2\sqrt {13} + 1}}{4}a\), \(x = EI = EL = \frac{{\sqrt {13} }}{2}a\), \(y = IL = \frac{a}{2}\).
Hai tam giác \(ELI\) và tam giác \(EKJ\) đồng dạng với nhau theo tỉ số \(k = \frac{2}{3}\) nên
Do đó: \({S_{IJKL}} = {S_{ELI}} - {S_{EKJ}} = {S_{ELI}} - {\left( {\frac{2}{3}} \right)^2}{S_{ELI}} = \frac{{5\sqrt {51} }}{{144}}{a^2}\).
Câu 2
Lời giải
Chọn C
Dựa vào bảng số liệu đã cho thì có \[47\] nhân viên trong công ty nhận được mức thưởng tết từ 15 triệu đồng đến dưới 20 triệu đồng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

