Câu hỏi:

01/12/2025 27 Lưu

Trong các khẳng định sau, khẳng định nào đúng?

A. Hai đường thẳng chéo nhau thì chúng có điểm chung.
B. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau.
C. Hai đường thẳng cùng nằm trên một mặt phẳng thì song song với nhau.
D. Hai đường thẳng song song khi và chỉ khi chúng không có điểm chung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Theo vị trí tương đối của hai đường thẳng trong không gian ta có: Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{3{a^2}\sqrt {51} }}{{144}}\].                             
B. \[\frac{{3{a^2}\sqrt {31} }}{{144}}\].                                    
C. \[\frac{{{a^2}\sqrt {31} }}{{144}}\].              
D. \[\frac{{5{a^2}\sqrt {51} }}{{144}}\].

Lời giải

Chọn D

Cho tứ diện ABCD có tất cả các cạnh bằng a, I là trung điểm của AC (ảnh 1)

Gọi \(K = \left( P \right) \cap BD\), \(L = \left( P \right) \cap BC\), \(E = \left( P \right) \cap CD\).

\(\left( P \right)\,\,//\,AB\) nên \(IL\,//\,AB\), \(JK\,//\,AB\). Do đó \(IJKL\) hình thang và \(L\) là trung điểm cạnh \(BC\), nên ta có \(\frac{{KD}}{{KB}} = \frac{{JD}}{{JA}} = \frac{1}{2}\).

Xét tam giác \(ACD\)\(I\), \(J\), \(E\) thẳng hàng. Áp dụng định lí Mê-nê-la-uýt ta có:

\(\frac{{ED}}{{EC}}.\frac{{IC}}{{IA}}.\frac{{JA}}{{JD}} = 1 \Rightarrow \frac{{ED}}{{EC}} = \frac{1}{2} \Rightarrow D\) là trung điểm \(EC\).

Dễ thấy hai tam giác \(ECI\)\(ECL\) bằng nhau theo trường hợp c-g-c.

Áp dụng định lí cosin cho tam giác \(ICE\) ta có:

\(E{I^2} = E{C^2} + I{C^2} - 2EC.IC.\cos 60^\circ = \frac{{13{a^2}}}{4}\)\( \Rightarrow EL = EI = \frac{{a\sqrt {13} }}{2}\).

Áp dụng công thức Hê-rông cho tam giác \(ELI\) ta có: \({S_{ELI}} = \sqrt {p{{\left( {p - x} \right)}^2}\left( {p - y} \right)} = \frac{{\sqrt {51} }}{{16}}{a^2}\)

Với \(p = \frac{{EI + EL + IL}}{2} = \frac{{2\sqrt {13} + 1}}{4}a\), \(x = EI = EL = \frac{{\sqrt {13} }}{2}a\), \(y = IL = \frac{a}{2}\).

Hai tam giác \(ELI\) và tam giác \(EKJ\) đồng dạng với nhau theo tỉ số \(k = \frac{2}{3}\) nên

Do đó: \({S_{IJKL}} = {S_{ELI}} - {S_{EKJ}} = {S_{ELI}} - {\left( {\frac{2}{3}} \right)^2}{S_{ELI}} = \frac{{5\sqrt {51} }}{{144}}{a^2}\).

Câu 2

A. \[13\].                                      
B. \[5\].                        
C. \[47\].                      
D. \[130\].

Lời giải

Chọn C

Dựa vào bảng số liệu đã cho thì có \[47\] nhân viên trong công ty nhận được mức thưởng tết từ 15 triệu đồng đến dưới 20 triệu đồng.

Câu 3

A. \(7\).
B. \(10\).                        
C. \(5\).                        
D. \(6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 5;3} \right)\).         
B. \[\left( { - 1; + \infty } \right)\].                 
C. \(\left( { - \infty ;3} \right)\).     
D. \(\left( { - 3;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 1      
B. 2                                 
C. 3                              
D. 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP