Câu hỏi:

01/12/2025 66 Lưu

              Cho hình chóp \[S.ABC\] có đáy là tam giác \[ABC\] thỏa mãn \[AB = AC = 4,\] \[\widehat {BAC} = 30^\circ \]. Mặt phẳng \[\left( P \right)\] song song với \[\left( {ABC} \right)\], mặt phẳng \[\left( P \right)\] đi qua điểm \[M\] trên cạnh \[SA\] sao cho \[SM = 2MA\] và cắt các cạnh \[SB,SC\]lần lượt tại \[P,N\]. Khi đó diện tích tam giác \[MNP\]bằng bao nhiêu?

A. \(1\).
B. \(\frac{{14}}{9}\).       
C. \(\frac{{25}}{9}\).    
D. \(\frac{{16}}{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4 (ảnh 1)

Diện tích tam giác \[ABC\]\[{S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.4.4.\sin 30^\circ = 4\].

Gọi \[\,\,P,N\] lần lượt là giao điểm của mặt phẳng \[\left( P \right)\] và các cạnh \[SB,\,\,SC\].

\[\left( P \right)\]\({\rm{//}}\)\[\left( {ABC} \right)\] nên theoo định lí Talet, ta có \[\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{2}{3}\].

Khi đó tam giác \[MNP\] đồng dạng với tam giác \[ABC\] theo tỉ số \[k = \frac{2}{3}\].

Vậy \[{S_{\Delta MNP}} = {k^2}.{S_{\Delta ABC}} = {\left( {\frac{2}{3}} \right)^2}.4 = \frac{{16}}{9}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{3{a^2}\sqrt {51} }}{{144}}\].                             
B. \[\frac{{3{a^2}\sqrt {31} }}{{144}}\].                                    
C. \[\frac{{{a^2}\sqrt {31} }}{{144}}\].              
D. \[\frac{{5{a^2}\sqrt {51} }}{{144}}\].

Lời giải

Chọn D

Cho tứ diện ABCD có tất cả các cạnh bằng a, I là trung điểm của AC (ảnh 1)

Gọi \(K = \left( P \right) \cap BD\), \(L = \left( P \right) \cap BC\), \(E = \left( P \right) \cap CD\).

\(\left( P \right)\,\,//\,AB\) nên \(IL\,//\,AB\), \(JK\,//\,AB\). Do đó \(IJKL\) hình thang và \(L\) là trung điểm cạnh \(BC\), nên ta có \(\frac{{KD}}{{KB}} = \frac{{JD}}{{JA}} = \frac{1}{2}\).

Xét tam giác \(ACD\)\(I\), \(J\), \(E\) thẳng hàng. Áp dụng định lí Mê-nê-la-uýt ta có:

\(\frac{{ED}}{{EC}}.\frac{{IC}}{{IA}}.\frac{{JA}}{{JD}} = 1 \Rightarrow \frac{{ED}}{{EC}} = \frac{1}{2} \Rightarrow D\) là trung điểm \(EC\).

Dễ thấy hai tam giác \(ECI\)\(ECL\) bằng nhau theo trường hợp c-g-c.

Áp dụng định lí cosin cho tam giác \(ICE\) ta có:

\(E{I^2} = E{C^2} + I{C^2} - 2EC.IC.\cos 60^\circ = \frac{{13{a^2}}}{4}\)\( \Rightarrow EL = EI = \frac{{a\sqrt {13} }}{2}\).

Áp dụng công thức Hê-rông cho tam giác \(ELI\) ta có: \({S_{ELI}} = \sqrt {p{{\left( {p - x} \right)}^2}\left( {p - y} \right)} = \frac{{\sqrt {51} }}{{16}}{a^2}\)

Với \(p = \frac{{EI + EL + IL}}{2} = \frac{{2\sqrt {13} + 1}}{4}a\), \(x = EI = EL = \frac{{\sqrt {13} }}{2}a\), \(y = IL = \frac{a}{2}\).

Hai tam giác \(ELI\) và tam giác \(EKJ\) đồng dạng với nhau theo tỉ số \(k = \frac{2}{3}\) nên

Do đó: \({S_{IJKL}} = {S_{ELI}} - {S_{EKJ}} = {S_{ELI}} - {\left( {\frac{2}{3}} \right)^2}{S_{ELI}} = \frac{{5\sqrt {51} }}{{144}}{a^2}\).

Câu 2

A. \[13\].                                      
B. \[5\].                        
C. \[47\].                      
D. \[130\].

Lời giải

Chọn C

Dựa vào bảng số liệu đã cho thì có \[47\] nhân viên trong công ty nhận được mức thưởng tết từ 15 triệu đồng đến dưới 20 triệu đồng.

Câu 3

A. \(7\).
B. \(10\).                        
C. \(5\).                        
D. \(6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 5;3} \right)\).         
B. \[\left( { - 1; + \infty } \right)\].                 
C. \(\left( { - \infty ;3} \right)\).     
D. \(\left( { - 3;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 1      
B. 2                                 
C. 3                              
D. 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP