a) Tính giới hạn sau: \(\,\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 3n - 1}}{{4{n^2} + 5}}\,\,\).
b) Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{2{x^2} - 5x + 3}}{{x - 1}}\,\,\,\,\,{\rm{khi}}\,\,x \ne 1\\x + m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x = 1\end{array} \right.\)
Tìm m để hàm số \(f(x)\) liên tục tại \[x = 1\]
a) Tính giới hạn sau: \(\,\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 3n - 1}}{{4{n^2} + 5}}\,\,\).
b) Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{2{x^2} - 5x + 3}}{{x - 1}}\,\,\,\,\,{\rm{khi}}\,\,x \ne 1\\x + m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x = 1\end{array} \right.\)
Tìm m để hàm số \(f(x)\) liên tục tại \[x = 1\]
Quảng cáo
Trả lời:
a) \(\,\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 3n - 1}}{{4{n^2} + 5}}\,\, = \mathop {\lim }\limits_{n \to + \infty } \frac{{2 + \frac{3}{n} - \frac{1}{{{n^2}}}}}{{4 + \frac{5}{{{n^2}}}}}\)\( = \frac{1}{2}\).
b) Ta có: \(f(1) = 1 + m\)
\(\,\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 5x + 3}}{{x - 1}}\,\, = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(2x - 3)}}{{x - 1}}\)\(\,\, = \mathop {\lim }\limits_{x \to 1} (2x - 3) = - 1\).
Đề hàm số \(f(x)\) liên tục tại \[x = 1\]thì \(1 + m = - 1 \Leftrightarrow m = - 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \(S \in (SAC) \cap (SBD)\)
Gọi \(O\) là giao điểm \(AC\) và \(BD\)
\( \Rightarrow O \in (SAC) \cap (SBD)\)
\( \Rightarrow (SAC) \cap (SBD) = SO\)
b) Gọi \(I,J\) lần lượt là trung điểm \(AB,AD\)
Suy ra \(\frac{{SM}}{{SI}} = \frac{{SN}}{{SJ}} = \frac{2}{3} \Rightarrow MN//IJ\)
\(\left\{ \begin{array}{l}P \in (MNP) \cap (ABCD)\\MN//IJ\\MN \subset (MNP),IJ \subset (ABCD)\end{array} \right.\)
Giao tuyến \(\left( {MNP} \right)\)và \(\left( {ABCD} \right)\) là đường thẳng đi qua \(P\) và song song \(IJ\) , cắt \(BC,CD,AD\)lần lượt tại \(E,F,G\).
Trong mặt phẳng \(\left( {SAD} \right)\), gọi \(H\) là giao điểm \(NG\) và \(SD,NG\) cắt \(SA\) tại \(K\).
Trong mặt phẳng \(\left( {SAB} \right)\), gọi \(L\) là giao điểm của \(MK\) và \(SB\).
Hình tạo bởi các giao tuyến là ngũ giác \(EFHKL\).
Câu 2
Lời giải
Chọn D
Một mặt phẳng được hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
