Cho biết \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - a\,x + a - 1}}{{x - 1}} = 1\,\,\left( {a \in \mathbb{R}} \right)\). Tính \(M = {a^2} + 2a\).
Quảng cáo
Trả lời:
Chọn D
Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - a\,x + a - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^2} - 1} \right) - a\,\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x + 1} \right)\left( {x - 1} \right) - a\,\left( {x - 1} \right)}}{{x - 1}}\)
\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1 - a} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1 - a} \right) = 2 - a = 1\)
Suy ra \(2 - a = 1 \Leftrightarrow a = 1\).
Vậy \(M = {a^2} + 2a = {1^2} + 2.1 = 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có: \[q = \frac{{{u_2}}}{{{u_1}}} = \frac{9}{{81}} = \frac{1}{9}\].
Lời giải

a) Xác định giao tuyến \[d\] của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
\(S \in \left( {SAB} \right) \cap (SCD)\)
\[AB\parallel CD,\,\,AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\]
\[ \Rightarrow \left( {SAB} \right) \cap (SCD) = Sx\parallel AB\parallel CD\].
b) Gọi \(M,\,\,N\) lần lượt là trung điểm của \[SC\] và \[AD\]. Chứng minh \(\left( {OMN} \right)//\left( {SAB} \right)\).
\[ON\] là đường trung bình của tam giác \(DAB \Rightarrow ON\parallel AB\)
\[OM\] là đường trung bình của tam giác \(CSA \Rightarrow OM\parallel SA\)
\( \Rightarrow \left( {OMN} \right)\parallel \left( {SAB} \right)\)
c) Gọi \[G\] là trọng tâm của tam giác \[ABC\], \[H\] là giao điểm của \[d\] và mặt phẳng \[\left( {AGM} \right)\]. Chứng minh tứ giác \[SHDC\] là hình bình hành.
Trong \(\left( {ABCD} \right)\), gọi \(K = AG \cap CD \Rightarrow MK = \left( {AGM} \right) \cap \left( {SCD} \right)\).
\( \Rightarrow H = d \cap KM\)
Chứng minh được \(SH = CD\).
Mặt khác \(SH//CD \Rightarrow SHDC\) là hình bình hành.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.