Câu hỏi:

04/12/2025 21 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\)\(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Khẳng định nào sau đây là đúng?

A. \(PQ\) cắt \(\left( {ABCD} \right)\).           
B. \(PQ \subset \left( {ABCD} \right)\).             
C. \(PQ//\left( {ABCD} \right)\).   
D. \(PQ\)\(CD\) chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB (ảnh 1)

Ta có: \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3} \Rightarrow PQ//AB\) (định lí Ta-let đảo)

\(AB \subset \left( {ABCD} \right)\)

Nên \(PQ//\left( {ABCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(MN//\left( {ABC} \right)\).     
B. \(MN//\left( {SBC} \right)\).    
C. \(MN//SC\).   
D. \(MN = 2SB\).

Lời giải

Chọn A

Cho hình chóp S.ABC có M,N lần lượt là trung điểm của SA,SB. Khẳng định nào sau đây đúng (ảnh 1)

Ta có \(MN\) là đường trung bình \(\Delta SAB\) nên \(MN//AB \subset \left( {ABC} \right) \Rightarrow MN//\left( {ABC} \right)\)

Câu 2

A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).                    
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \).                
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).

Lời giải

Chọn D

\[\begin{array}{l}\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {n + 3} - \sqrt {n + 2} } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {\sqrt {n + 3} - \sqrt {n + 2} } \right)\left( {\sqrt {n + 3} + \sqrt {n + 2} } \right)}}{{\sqrt {n + 3} + \sqrt {n + 2} }}\\ = \mathop {\lim }\limits_{n \to + \infty } \frac{{n + 3 - (n + 2)}}{{\sqrt n .\left( {\sqrt {1 + \frac{3}{n}} + \sqrt {1 + \frac{2}{n}} } \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt n .\left( {\sqrt {1 + \frac{3}{n}} + \sqrt {1 + \frac{2}{n}} } \right)}} = 0\end{array}\]

Câu 3

A. \( + \,\infty \).   
B. \( - \,\infty \). 
C. \(2\).       
D. \[0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[MN\] chéo \[SC\].         
B. \[MN\,{\rm{//}}\,\left( {SBD} \right)\]. 
C. \[MN\,{\rm{//}}\,\left( {ABCD} \right)\].     
D. \[MN \cap \left( {SAC} \right) = \left\{ H \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP