Đo chiều cao của 100 học sinh trường THPT Tam Phước, cho bảng số liệu sau:
Nhóm : 1 2 3 4 5 6
Chiều cao(cm) : \(\left[ {150;153} \right)\) \(\left[ {153;156} \right)\) \(\left[ {156;159} \right)\) \(\left[ {159;162} \right)\) \(\left[ {162;165} \right)\) \(\left[ {165;168} \right)\)
Số học sinh : 7 13 40 21 13 6
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là:
Đo chiều cao của 100 học sinh trường THPT Tam Phước, cho bảng số liệu sau:
Nhóm : 1 2 3 4 5 6
Chiều cao(cm) : \(\left[ {150;153} \right)\) \(\left[ {153;156} \right)\) \(\left[ {156;159} \right)\) \(\left[ {159;162} \right)\) \(\left[ {162;165} \right)\) \(\left[ {165;168} \right)\)
Số học sinh : 7 13 40 21 13 6
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là:
Quảng cáo
Trả lời:
Chọn D
Ta có: Tứ phân vị thứ 3 nằm trong nhóm thứ 4 \(\left[ {159;162} \right)\).
Suy ra tứ phân vị thứ 3 là: \({Q_3} = {a_4} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + {m_2} + {m_3}} \right)}}{{{m_4}}}\left( {{a_5} - {a_4}} \right) = 159 + \frac{{\frac{{3.100}}{4} - (7 + 13 + 40)}}{{21}}\left( {162 - 159} \right) = 161,14\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Từ hình vẽ suy ra góc lượng giác đề cho có số đo \(\frac{{3\pi }}{2} + k2\pi ,k \in \mathbb{Z}\).
Câu 2
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 5x + 6}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left( {x - 3} \right)\left( {x - 2} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 2} \right) = 3 - 2 = 1\)
\(\mathop {\lim }\limits_{x \to {3^ - }} f(x) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {ax + 1} \right) = 3a + 1\)
Để hàm số liên tục trên R thì hàm số liên tục tại \(x = 3\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} f(x) \Leftrightarrow 3a + 1 = 1 \Leftrightarrow a = 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
