Câu hỏi:

04/12/2025 67 Lưu

Trong không gian cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\)\(C{\rm{D}}\), \(G\) là trọng tâm của tam giác \(BC{\rm{D}}\). Đường thẳng \(AG\) cắt đường thẳng nào sau đây?

A. \(DN\).                
B. \(CM\).    
C. \(MN\).  
D. \(C{\rm{D}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Trong không gian cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB và CD (ảnh 1)

Trong mặt phẳng \(\left( {ABN} \right)\), ta thấy \(AG\) cắt \(MN\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\).  
B. \(\frac{{3\pi }}{2} + k2\pi ,k \in \mathbb{Z}\). 
C. \( - \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).          
D. \( - \frac{{3\pi }}{2} + k2\pi ,k \in \mathbb{Z}\).

Lời giải

Chọn B

Từ hình vẽ suy ra góc lượng giác đề cho có số đo \(\frac{{3\pi }}{2} + k2\pi ,k \in \mathbb{Z}\).

Lời giải

Chọn A

Ta có: \(\mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 5x + 6}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left( {x - 3} \right)\left( {x - 2} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 2} \right) = 3 - 2 = 1\)

\(\mathop {\lim }\limits_{x \to {3^ - }} f(x) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {ax + 1} \right) = 3a + 1\)

Để hàm số liên tục trên R thì hàm số liên tục tại \(x = 3\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} f(x) \Leftrightarrow 3a + 1 = 1 \Leftrightarrow a = 0\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - 3\).          
B. \( + \infty \).          
C. \(0\).            
D. \( - \frac{3}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(PQ\) cắt \(\left( {ABCD} \right)\).           
B. \(PQ \subset \left( {ABCD} \right)\).             
C. \(PQ//\left( {ABCD} \right)\).   
D. \(PQ\)\(CD\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Có duy nhất một mặt phẳng song song với \(a\)\(b.\)                                
B. Có duy nhất một mặt phẳng qua \(a\) và song song với \(b.\)                           
C. Có duy nhất một mặt phẳng qua điểm \(M\), song song với \(a\)\(b\) (với \(M\) là điểm cho trước).
D. Có vô số đường thẳng song song với \(a\) và cắt \(b.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(MN//\left( {ABC} \right)\).     
B. \(MN//\left( {SBC} \right)\).    
C. \(MN//SC\).   
D. \(MN = 2SB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP