Câu hỏi:

04/12/2025 26 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Tích tất cả các nghiệm của phương trình \({3^{{x^2} - 5x + 3}} = 81\).

A. \(5\).

B. \(1\).   
C. \( - 1\).  
D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\({3^{{x^2} - 5x + 3}} = 81\)\( \Leftrightarrow {3^{{x^2} - 5x + 3}} = {3^4}\)\( \Leftrightarrow {x^2} - 5x + 3 = 4\)\( \Leftrightarrow {x^2} - 5x - 1 = 0\).

Theo định lí vi ét, tích các nghiệm của phương trình là -1. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).

Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.

Trả lời: 6,21.

Câu 2

a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).

Đúng
Sai

b) Đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(A\left( { - 1;1} \right)\).

Đúng
Sai

c) Phương trình \({3^x} = {9^{{x^2} + 1}}\) có hai nghiệm thực phân biệt.

Đúng
Sai
d) Hàm số \(y = f\left( x \right) = {3^x}\) nghịch biến trên \(\left( { - \infty ; + \infty } \right)\).
Đúng
Sai

Lời giải

a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).

b) Thay \(x =  - 1\) vào hàm số \(y = g\left( x \right)\) ta được \(g\left( { - 1} \right) = {9^{{{\left( { - 1} \right)}^2} + 1}} = 81\).

Vậy đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(\left( { - 1;81} \right)\).

c) \({3^x} = {9^{{x^2} + 1}}\)\( \Leftrightarrow {3^x} = {3^{2{x^2} + 2}}\)\( \Leftrightarrow x = 2{x^2} + 2\)\( \Leftrightarrow 2{x^2} - x + 2 = 0\).

Phương trình trên vô nghiệm vì \(\Delta  = {\left( { - 1} \right)^2} - 4 \cdot 2 \cdot 2 =  - 15 < 0\).

Do đó phương trình \({3^x} = {9^{{x^2} + 1}}\) vô nghiệm.

d) Hàm số \(y = f\left( x \right) = {3^x}\) đồng biến trên \(\left( { - \infty ; + \infty } \right)\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\ln {e^2} = 2\).   

B. \(\ln {e^2} = 2e\).  
C. \(\log 20 = 2\). 
D. \(\log 10 = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\log a + 3\log b\).         

B. \(\frac{1}{2}\log a + \frac{1}{3}\log b\).
C. \(3\log a + 2\log b\). 
D. \(2\log a + \log b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP