Cho hai hàm số \(y = f\left( x \right) = {3^x},y = g\left( x \right) = {9^{{x^2} + 1}}\).
a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).
b) Đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(A\left( { - 1;1} \right)\).
c) Phương trình \({3^x} = {9^{{x^2} + 1}}\) có hai nghiệm thực phân biệt.
Quảng cáo
Trả lời:
a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).
b) Thay \(x = - 1\) vào hàm số \(y = g\left( x \right)\) ta được \(g\left( { - 1} \right) = {9^{{{\left( { - 1} \right)}^2} + 1}} = 81\).
Vậy đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(\left( { - 1;81} \right)\).
c) \({3^x} = {9^{{x^2} + 1}}\)\( \Leftrightarrow {3^x} = {3^{2{x^2} + 2}}\)\( \Leftrightarrow x = 2{x^2} + 2\)\( \Leftrightarrow 2{x^2} - x + 2 = 0\).
Phương trình trên vô nghiệm vì \(\Delta = {\left( { - 1} \right)^2} - 4 \cdot 2 \cdot 2 = - 15 < 0\).
Do đó phương trình \({3^x} = {9^{{x^2} + 1}}\) vô nghiệm.
d) Hàm số \(y = f\left( x \right) = {3^x}\) đồng biến trên \(\left( { - \infty ; + \infty } \right)\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).
Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.
Trả lời: 6,21.
Câu 2
Số nghiệm của phương trình \(\left( {{x^2} + 2x - 3} \right)\left( {{{\log }_2}x - 3} \right) = 0\).
A. \(0\).
Lời giải
Điều kiện: \(x > 0\).
Ta có \(\left( {{x^2} + 2x - 3} \right)\left( {{{\log }_2}x - 3} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2x - 3 = 0\\{\log _2}x - 3 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1;x = - 3\\x = 8\end{array} \right.\).
Kết hợp điều kiện, ta có \(x = 1;x = 8\).
Vậy phương trình có hai nghiệm. Chọn C.
Câu 3
A. \(5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(2\log a + 3\log b\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(a > 1,b > 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
