Câu hỏi:

04/12/2025 63 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) với \[{u_n} = \frac{{a{n^3} - 5{n^2} + 4}}{{5{n^3} - 2{n^2} + 3n - 1}}\] trong đó \(a\) là tham số. Để dãy số \(\left( {{u_n}} \right)\) có giới hạn bằng \(2\) thì giá trị của \(a\)

A. \(a = 10.\)        
B. \(a = 8.\)     
C. \(a = 6.\)
D. \(a = 4.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \(\lim {u_n} = \lim \frac{{a{n^3} - 5{n^2} + 4}}{{5{n^3} - 2{n^2} + 3n - 1}} = \lim \frac{{{n^3}\left( {a - \frac{5}{n} + \frac{4}{{{n^3}}}} \right)}}{{{n^3}\left( {5 - \frac{2}{n} + \frac{3}{{{n^2}}} - \frac{1}{{{n^3}}}} \right)}} = = \lim \frac{{\left( {a - \frac{5}{n} + \frac{4}{{{n^3}}}} \right)}}{{\left( {5 - \frac{2}{n} + \frac{3}{{{n^2}}} - \frac{1}{{{n^3}}}} \right)}} = \frac{a}{5}\).

\(\lim {u_n} = 2 \Rightarrow \frac{a}{5} = 2 \Rightarrow a = 10.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\lim {\mkern 1mu} \left( {\sqrt {4{n^2} + 1} - 3n} \right) = \lim \,\,n\left( {\sqrt {4 + \frac{1}{{{n^2}}}} - 3} \right)\).

\[\lim \,\,n = + \infty \]\[\lim \left( {\sqrt {4 + \frac{1}{{{n^2}}}} - 3} \right) = 2 - 3 = - 1 < 0\].

Từ đó ta có \[\lim \,\left( {\sqrt {4{n^2} + 1} - 3n} \right) = - \infty \].

b) \(\mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{\sqrt {x + 1} - 2}}{{9 - {x^2}}} = \) \(\mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{(\sqrt {x + 1} - 2)(\sqrt {x + 1} + 2)}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}}\) \( = \mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{x - 3}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}}\)

\[ = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{(3 - x)(3 + x)(\sqrt {x + 1} + 2)}}\] \[ = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{(3 + x)(\sqrt {x + 1} + 2)}}\] \[ = \frac{{ - 1}}{{(3 + 3)(\sqrt {3 + 1} + 2)}} = - \frac{1}{{24}}\].

c) Hàm số liên tục trên đoạn \(\left[ {0;6} \right] \Leftrightarrow \) hàm số liên tục trên khoảng \(\left( {0;6} \right)\) \(\mathop {\lim }\limits_{x \to {0^ + }} = f\left( 0 \right)\), \(\mathop {\lim }\limits_{x \to {6^ - }} = f\left( 6 \right)\).

Ta cóa) Tính giới hạn sau: Lim căn {4{n^2} + 1}  - 3n) (ảnh 1) \(\mathop {\lim }\limits_{x \to {6^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} \right) = 1 + m = f\left( 6 \right)\).

Khi \[x \in \left[ {0;4} \right]\] thì \[f\left( x \right) = \sqrt x \] nên hàm số liên tục trên khoảng \(\left( {0;4} \right)\).

Khi \[x \in \left( {4;6} \right]\] thì \[f\left( x \right) = 1 + m\] nên hàm số liên tục trên khoảng \(\left( {4;6} \right)\).

Vậy, hàm số liên tục trên đoạn \(\left[ {0;6} \right] \Leftrightarrow \) hàm số liên tục tại diểm \(x = 4\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right)\) \( \Leftrightarrow m + 1 = \sqrt 4 \Leftrightarrow m = 1\).

Câu 2

A. \[ + \infty \].           
B. \[ - 1\].           
C. \[2\].      
D. \[ - \infty \]

Lời giải

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} \right) = 3\), \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\). Vì \(x \to {1^ + }\) nên \(x > 1 \Rightarrow x - 1 > 0\).

Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x + 1}}{{x - 1}} = + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {BCA'} \right)\].        
B. \[\left( {BC'D} \right)\].     
C. \[\left( {A'C'C} \right)\]. 
D. \[\left( {BDA'} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP