Câu hỏi:

04/12/2025 98 Lưu

Một bệnh nhân hàng ngày phải uống một viên thuốc 150mg. Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 6%.

a)Tính lượng thuốc có trong cơ thể sau khi uống viên thuốc của ngày thứ 5 (làm tròn ở hàng phần nghìn) .

b) Ước tính lượng thuốc trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian dài (làm tròn ở hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi un là lượng thuốc trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

Ta có:

Lượng thuốc sau khi uống ở ngày thứ 1 là: u1 = 150 mg

Lượng thuốc sau khi uống ở ngày thứ 2 là: u2 = 6%.u1 + 150 = 6%.150 + 150 = 150(1+0,06)

Lượng thuốc sau khi uống ở ngày thứ 3 là:

u3 = 6%.u2 + 150 = 0,06.150.(1+0,06) + 150 = 150(1+0,06 + 0,062)

Lượng thuốc sau khi uống ở ngày thứ 4 là: u4 = 6%.u3 + 150 = 150(1+0,06 + 0,062 + 0,063)

Lượng thuốc sau khi uống ở ngày thứ 5 là:

u5 = 6%.u4 + 150 = 150(1+0,06 + 0,062 + 0,063+ 0,064) \( \approx \)159,574(mg).

b) Nếu bệnh nhân sử dụng thuốc trong thời gian dài, lượng thuốc trong cơ thể được ước lượng bởi \[S = 150(1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...)\].

Ta có \[1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...\]là tổng của một cấp số nhân lùi vô hạn

với công bội q = 0,06 và số hạng đầu u1 = 1.

Do đó \[S = 150(1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...) = 150.\frac{1}{{1 - 0,06}} = 150.\frac{{50}}{{47}} \approx 159,6(mg).\]

Vậy lượng thuốc trong cơ thể được ước lượng là 159,6 (mg) nếu dùng lâu dài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[MN\] cắt \[(ABCD)\].                                             
B. \[MN\]song song \[(ABCD)\].
C. \[MN\]song song với \[(SAD)\].                                
D. \[MN\] nằm trên \[(ABCD)\].

Lời giải

Chọn B

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N là hai điểm trên SA,\,SB (ảnh 1)

\[\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3} \Rightarrow \left\{ \begin{array}{l}MN//AB\\AB \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN//\left( {ABCD} \right)\]

Câu 2

A. \[{u_n} = {\left( { - \frac{7}{4}} \right)^n}\]. 
B. \[{u_n} = {\left( {\frac{4}{\pi }} \right)^n}\].   
C. \[{u_n} = {\left( {\frac{5}{3}} \right)^n}\].

D. \[{u_n} = {\left( {\frac{3}{7}} \right)^n}\].

 

Lời giải

Chọn D

Giới hạn \[\lim {q^n} = 0 \Leftrightarrow \left| q \right| < 1\]. Khi đó \[\lim {\left( {\frac{3}{7}} \right)^n} = 0\]

Câu 3

A. \(L = \frac{1}{2}.\)         
B. \(L = 0.\)   
C. \[L = 2.\]   
D. \[L = - \frac{3}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0.\)  
B. \[4\]       
C. \( - 3.\)    
D. \[ - 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 2. 
B. 3.   
C. 5. 
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP