Câu hỏi:

04/12/2025 13 Lưu

Cho hình vuông \[ABCD\] có cạnh bằng 3. Người ta dựng hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng \[\frac{1}{2}\] đường chéo của hình vuông \[ABCD\]; dựng hình vuông \[{A_2}{B_2}{C_2}{D_2}\] có cạnh bằng \[\frac{1}{2}\] đường chéo của hình vuông \[{A_1}{B_1}{C_1}{D_1}\] và cứ tiếp tục như vậy (tham khảo hình vẽ).

Cho hình vuông ABCD có cạnh bằng 3. Người ta dựng hình vuông A1B1C1D1 (ảnh 1)

              Giả sử cách dựng trên có thể tiến tới vô hạn. Tính tổng diện tích  của tất cả các hình vuông \(ABCD,{A_1}{B_1}{C_1}{D_1},{A_2}{B_2}{C_2}{D_2}...\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({S_1} = {S_{ABC{\rm{D}}}} = {3^2}\);

                        \[{S_2} = {S_{{A_1}{B_1}{C_1}{D_1}}} = {\left( {\frac{{3\sqrt 2 }}{2}} \right)^2} = \frac{{{3^2}}}{2}\];

                       \({S_3} = {S_{{A_2}{B_2}{C_2}{D_2}}} = {\left( {\frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{{{3^2}}}{{{2^2}}}\)

                       ………………………

                       \({S_n} = {3^2}\frac{1}{{{2^{n - 1}}}}\),..

              Như vậy các số \({S_1},{S_2},...,{S_n},..\)lập thành một cấp số nhân lùi vô hạn có:\({S_1} = {3^2},q = \frac{1}{2}\)

Vậy \(S = {S_{ABC{\rm{D}}}} + {S_{{A_1}{B_1}{C_1}{D_1}}} + {S_{{A_2}{B_2}{C_2}{D_2}}} + ... = {S_1} + {S_2} + ... + {S_n} + ... = \frac{{{S_1}}}{{1 - q}}\)\( = \frac{{{3^2}}}{{1 - \frac{1}{2}}} = {2.3^2} = 18\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[\lim \frac{{8n + 5}}{{2n - 1}}\]\[ = \lim \frac{{8 + \frac{5}{n}}}{{2 - \frac{1}{n}}} = \frac{{8 + 0}}{{2 - 0}} = 4\]

              b) \[\mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + 1}}{{1 - {x^2}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}(2 + \frac{1}{{{x^2}}})}}{{{x^2}(\frac{1}{{{x^2}}} - 1)}}\]\[ = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{1}{{{x^2}}}}}{{\frac{1}{{{x^2}}} - 1}} = \frac{{2 + 0}}{{0 - 1}} = - 2\]

              c) \[\mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{3{x^2} - 6}}{{x - \sqrt 2 }} = \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{3(x - \sqrt 2 )(x + \sqrt 2 )}}{{x - \sqrt 2 }}\]=\[\mathop {\lim }\limits_{x \to \sqrt 2 } 3(x + \sqrt 2 ) = 6\sqrt 2 \].  

Câu 2

A. \(\frac{5}{9}\).  
B. 0.    
C. \( + \infty .\)  
D. \( - \infty \).

Lời giải

Chọn B

Câu 5

A. 7.     
B. 8
C. 5.   
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP