Câu hỏi:

04/12/2025 10 Lưu

a) Tìm giá trị lớn nhất của phân thức \(M = \frac{{14}}{{{x^2} - 2x + 4}}.\)

b) Tìm giá trị nhỏ nhất của phân thức \(N = \frac{{11}}{{12 - 4x - {x^2}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \(M = \frac{{14}}{{{x^2} - 2x + 4}} = \frac{{14}}{{\left( {{x^2} - 2x + 1} \right) + 3}} = \frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 3 \ge 0\)

Suy ra \(\frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}} \le \frac{{14}}{3},\) hay \(M \le \frac{{14}}{3}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0,\) tức là \(x = 1.\)

Vậy giá trị lớn nhất của biểu thức \(M\) là \(\frac{{14}}{3}\) tại \(x = 1.\)

b) Ta có \(N = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)

Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(N \ge \frac{{11}}{{16}}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x =  - 2.\)

Vậy giá trị nhỏ nhất của biểu thức \(N\) là \(\frac{{11}}{{16}}\) tại \(x =  - 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có: \(A = \frac{{{x^3} + {y^3} + {z^3} - 3xyz}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3} - 3xyz}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y} \right)}^3} + {z^3} - 3xy\left( {x + y + z} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y + z} \right)}^3} - 3\left( {x + y} \right)z\left( {x + y + z} \right) - 3xy\left( {x + y + z} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\[ = \frac{{\left( {x + y + z} \right)\left[ {{{\left( {x + y + z} \right)}^2} - 3\left( {x + y} \right)z - 3xy} \right]}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\]

\[ = \frac{{\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx - 3xz - 3yz - 3xy} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\]

\[ = \frac{{\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}} = x + y + z.\]

b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:

\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)

Vậy \(B = \frac{1}{{{x^2} + 1}}.\)

Lời giải

Hướng dẫn giải

Với \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] ta có:

\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}\)

\( = \frac{{\left( {{x^2} - yz} \right)\left( {y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{y^2} - xz} \right)\left( {z + x} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{z^2} - xy} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)

\( = \frac{{{x^2}y + {x^2}z - {y^2}z - y{z^2} + {y^2}z + x{y^2} - x{z^2} - {x^2}z + {z^2}x + {z^2}y - {x^2}y - x{y^2}}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)

\( = \frac{0}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} = 0.\)

Vậy \(A = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP