Câu hỏi:

04/12/2025 69 Lưu

Một khách sạn có 50 phòng. Hiện tại giá cho thuê một phòng là 400 nghìn đồng/ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi phòng tăng giá thêm 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi giám đốc phải chọn giá phòng mới là bao nhiêu để thu nhập trong một ngày của khách sạn là lớn nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \[x\] (nghìn đồng) là giá phòng khách sạn cần đặt ra (\[x > 400\]).

Thì giá chênh lệch sau khi tăng là: \[x - 400\] (nghìn đồng).

Số phòng cho thuê giảm đi nếu giá \[x\] nghìn đồng/ngày là: \[\frac{{\left( {x - 400} \right) \cdot 2}}{{20}} = \frac{{x - 400}}{{10}}\] (phòng).

Số phòng cho thuê với giá \[x\] nghìn đồng/ngày là: \[50 - \frac{{x - 400}}{{10}} = 90 - \frac{x}{{10}}\] (phòng).

Tổng doanh thu trong 1 ngày là: \[f\left( x \right) = x\left( {90 - \frac{x}{{10}}} \right) = \frac{{ - {x^2}}}{{10}} + 90x\].

Suy ra \[f\left( x \right) = \frac{{ - {x^2} + 900x}}{{10}} = \frac{{ - {{\left( {x - 450} \right)}^2} - 202\,500}}{{10}} = \frac{{ - {{\left( {x - 450} \right)}^2}}}{{10}} - 20\,250 \le 20\,250\].

Dấu “=” xảy ra khi \[x = 450\].

Vậy nếu cho thuê phòng với giá 450 nghìn đồng/ngày thì doanh thu trong một ngày lớn nhất đạt \[20\,250\,000\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \[\widehat {BEF} = \widehat {xBE} = 30^\circ \] (Vì \[Bx\parallel AF\] và hai góc ở vị trí so le trong).

\[\widehat {BFA} = \widehat {xBF} = 60^\circ \].

Xét tam giác vuông \[ABF\]\[\widehat {FBA} = 30^\circ \] suy ra \[AF = \frac{1}{2}BF.\]

Áp dụng định lí Pythagore vào tam giác vuông \[ABF\] có:

\[A{B^2} + A{F^2} = B{F^2}\]

\[A{B^2} + A{F^2} = {\left( {2AF} \right)^2}\]

\[A{B^2} = 3A{F^2}\]

\[{\left( {AC + BC} \right)^2} = 3A{F^2}\]

\[{\left( {42 + 1,65} \right)^2} = 3A{F^2}\]

\[43,{65^2} = 3A{F^2}\]

\[AF = \sqrt {\frac{{43,{{65}^2}}}{3}} \]

\[AF \approx 25,2\,\,{\rm{m}}{\rm{.}}\]

Xét \[\Delta ABF\]\[\Delta AEB\] có:

\[\widehat {ABF} = \widehat {AEB} = 30^\circ \]

\[\widehat A\] chung

Do đó, (g.g).

Suy ra \[\frac{{AF}}{{AB}} = \frac{{AB}}{{AE}}\], do đó \[AE = \frac{{A{B^2}}}{{AF}} = \frac{{43,{{65}^2}}}{{25,2}} = 75,6{\rm{ }}\left( {{\rm{cm}}} \right)\].

Sau hai lần quan sát, tàu đã chạy được: \[75,6 - 25,5 = 50,4\,\,\left( {\rm{m}} \right)\].

Lời giải

Hướng dẫn giải

Đặt tên các đỉnh như hình vẽ. Đặt \[CJ = x\,\,\left( {{\rm{m}},\,x > 0} \right)\].

Người ta giăng lưới để nuôi một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí \[A\]. (ảnh 2)

Chứng minh được tam giác \[AJC\] \[BKA\] là hai tam giác đồng dạng nên

\[\frac{{CJ}}{{AK}} = \frac{{JA}}{{KB}}\] hay \[\frac{x}{5} = \frac{{12}}{{KB}}\] do đó \[KB = \frac{{60}}{x}\].

Diện tích của khu nuôi cá là \[S\left( x \right) = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right)\]

                                              \[S\left( x \right) = \frac{1}{2}\left( {60 + 12x + \frac{{300}}{x} + 60} \right)\]

\[S\left( x \right) = 6x + \frac{{150}}{x} + 60 = 6\left( {x + \frac{{25}}{x} + 10} \right) = 6\left( {\frac{{{x^2} - 10x + 25}}{x} + 20} \right) = 6\left[ {\frac{{{{\left( {x - 5} \right)}^2}}}{x} + 20} \right] \ge 120\].

Dấu “=” xảy ra khi \[x - 5 = 0\] nên \[x = 5.\]

Vậy diện tích nhỏ nhất có thể giăng là \[120\,\,{{\rm{m}}^2},\] đạt được khi \[x = 5\;\left( {\rm{m}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP