Câu hỏi:

04/12/2025 34 Lưu

Cho \(x,\,\,y,\,\,z \ne 0\) thoả mãn \(x + y + z = xyz\)\(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3.\)

Tính giá trị của biểu thức \(P = \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Do \(x,\,\,y,\,\,z \ne 0\) nên từ giả thiết \(x + y + z = xyz\) ta có: \(\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}} = 1.\)

Xét biểu thức: \(P = \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}}\)\( = {\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2} - 2\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)\)

Khi đó \(P = {3^2} - 2 \cdot 1 = 9 - 2 = 7.\)

Vậy \(P = 7.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \[\widehat {BEF} = \widehat {xBE} = 30^\circ \] (Vì \[Bx\parallel AF\] và hai góc ở vị trí so le trong).

\[\widehat {BFA} = \widehat {xBF} = 60^\circ \].

Xét tam giác vuông \[ABF\]\[\widehat {FBA} = 30^\circ \] suy ra \[AF = \frac{1}{2}BF.\]

Áp dụng định lí Pythagore vào tam giác vuông \[ABF\] có:

\[A{B^2} + A{F^2} = B{F^2}\]

\[A{B^2} + A{F^2} = {\left( {2AF} \right)^2}\]

\[A{B^2} = 3A{F^2}\]

\[{\left( {AC + BC} \right)^2} = 3A{F^2}\]

\[{\left( {42 + 1,65} \right)^2} = 3A{F^2}\]

\[43,{65^2} = 3A{F^2}\]

\[AF = \sqrt {\frac{{43,{{65}^2}}}{3}} \]

\[AF \approx 25,2\,\,{\rm{m}}{\rm{.}}\]

Xét \[\Delta ABF\]\[\Delta AEB\] có:

\[\widehat {ABF} = \widehat {AEB} = 30^\circ \]

\[\widehat A\] chung

Do đó, (g.g).

Suy ra \[\frac{{AF}}{{AB}} = \frac{{AB}}{{AE}}\], do đó \[AE = \frac{{A{B^2}}}{{AF}} = \frac{{43,{{65}^2}}}{{25,2}} = 75,6{\rm{ }}\left( {{\rm{cm}}} \right)\].

Sau hai lần quan sát, tàu đã chạy được: \[75,6 - 25,5 = 50,4\,\,\left( {\rm{m}} \right)\].

Lời giải

Hướng dẫn giải

a) Ta có: \(A = \frac{{{x^3} + {y^3} + {z^3} - 3xyz}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3} - 3xyz}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y} \right)}^3} + {z^3} - 3xy\left( {x + y + z} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\( = \frac{{{{\left( {x + y + z} \right)}^3} - 3\left( {x + y} \right)z\left( {x + y + z} \right) - 3xy\left( {x + y + z} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\)

\[ = \frac{{\left( {x + y + z} \right)\left[ {{{\left( {x + y + z} \right)}^2} - 3\left( {x + y} \right)z - 3xy} \right]}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\]

\[ = \frac{{\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx - 3xz - 3yz - 3xy} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}}\]

\[ = \frac{{\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)}}{{{x^2} + {y^2} + {z^2} - xy - yz - xz}} = x + y + z.\]

b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:

\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)

Vậy \(B = \frac{1}{{{x^2} + 1}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP