Hải đăng Đá Lát là một trong bảy ngọn hải đăng cao nhất Việt Nam được đặt trên đảo Đá Lát ở vị trí cực Tây quần đảo thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994 cao 42 m, có tác dụng chỉ vị trí đảo, giúp quan sát qàu thuyền hoạt động trong vùng biển Trường Sa, định hướng và xác định vị trí của mình. Một người cao \(1,65\,\,{\rm{m}}\) đamg đứng trên ngọn hải đăng quan sát hai lần một chiếc tàu. Lần thứ nhất người đó nhìn thấy chiếc tàu với góc hạ \[30^\circ ,\] lần thứ hai người đó nhìn thấy chiếc tàu với góc hạ \[60^\circ .\]

Biết hai vị trí được quan sát của tàu và chân hải đăng là ba điểm thẳng hàng. Hỏi sau hai lần quan sát, tàu đã chạy được bao nhiêu mét? (Làm tròn đến chữ số thập phân thứ nhất)
Hải đăng Đá Lát là một trong bảy ngọn hải đăng cao nhất Việt Nam được đặt trên đảo Đá Lát ở vị trí cực Tây quần đảo thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994 cao 42 m, có tác dụng chỉ vị trí đảo, giúp quan sát qàu thuyền hoạt động trong vùng biển Trường Sa, định hướng và xác định vị trí của mình. Một người cao \(1,65\,\,{\rm{m}}\) đamg đứng trên ngọn hải đăng quan sát hai lần một chiếc tàu. Lần thứ nhất người đó nhìn thấy chiếc tàu với góc hạ \[30^\circ ,\] lần thứ hai người đó nhìn thấy chiếc tàu với góc hạ \[60^\circ .\]

Biết hai vị trí được quan sát của tàu và chân hải đăng là ba điểm thẳng hàng. Hỏi sau hai lần quan sát, tàu đã chạy được bao nhiêu mét? (Làm tròn đến chữ số thập phân thứ nhất)
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \[\widehat {BEF} = \widehat {xBE} = 30^\circ \] (Vì \[Bx\parallel AF\] và hai góc ở vị trí so le trong).
\[\widehat {BFA} = \widehat {xBF} = 60^\circ \].
Xét tam giác vuông \[ABF\] có \[\widehat {FBA} = 30^\circ \] suy ra \[AF = \frac{1}{2}BF.\]
Áp dụng định lí Pythagore vào tam giác vuông \[ABF\] có:
\[A{B^2} + A{F^2} = B{F^2}\]
\[A{B^2} + A{F^2} = {\left( {2AF} \right)^2}\]
\[A{B^2} = 3A{F^2}\]
\[{\left( {AC + BC} \right)^2} = 3A{F^2}\]
\[{\left( {42 + 1,65} \right)^2} = 3A{F^2}\]
\[43,{65^2} = 3A{F^2}\]
\[AF = \sqrt {\frac{{43,{{65}^2}}}{3}} \]
\[AF \approx 25,2\,\,{\rm{m}}{\rm{.}}\]
Xét \[\Delta ABF\] và \[\Delta AEB\] có:
\[\widehat {ABF} = \widehat {AEB} = 30^\circ \]
\[\widehat A\] chung
Do đó, (g.g).
Suy ra \[\frac{{AF}}{{AB}} = \frac{{AB}}{{AE}}\], do đó \[AE = \frac{{A{B^2}}}{{AF}} = \frac{{43,{{65}^2}}}{{25,2}} = 75,6{\rm{ }}\left( {{\rm{cm}}} \right)\].
Sau hai lần quan sát, tàu đã chạy được: \[75,6 - 25,5 = 50,4\,\,\left( {\rm{m}} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \(M = \frac{{14}}{{{x^2} - 2x + 4}} = \frac{{14}}{{\left( {{x^2} - 2x + 1} \right) + 3}} = \frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}}.\)
Với mọi \(x,\) ta luôn có \({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 3 \ge 0\)
Suy ra \(\frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}} \le \frac{{14}}{3},\) hay \(M \le \frac{{14}}{3}.\)
Dấu “=” xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0,\) tức là \(x = 1.\)
Vậy giá trị lớn nhất của biểu thức \(M\) là \(\frac{{14}}{3}\) tại \(x = 1.\)
b) Ta có \(N = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)
Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)
Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(N \ge \frac{{11}}{{16}}.\)
Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x = - 2.\)
Vậy giá trị nhỏ nhất của biểu thức \(N\) là \(\frac{{11}}{{16}}\) tại \(x = - 2.\)
Lời giải
Hướng dẫn giải
Điều kiện \(a,\,\,b,\,\,c \ne 0.\)
Với \[a + b + c = 0,\] ta có \(a + b = - c;\,\,b + c = - a;\,\,c + a = - b.\)
Ta có \(C = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\left( {\frac{c}{{a - b}} + \frac{a}{{b - c}} + \frac{b}{{c - a}}} \right)\)
\( = \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}}_M + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{a}{{b - c}}}_N + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{b}{{c - a}}}_P\)
Xét \(M = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \left( {\frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{{b^2} - bc + ac - {a^2}}}{{ab}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a} \right) - c\left( {b - a} \right)}}{{ab}}\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a - c} \right)}}{{ab}}\)
\[ = 1 + \frac{c}{{a - b}} \cdot \frac{{ - \left( {a - b} \right)\left( { - c - c} \right)}}{{ab}}\]\[ = 1 + \frac{{c \cdot 2c}}{{ab}} = 1 + \frac{{2{c^3}}}{{abc}}.\]
Tương tự, \(N = 1 + \frac{{2{a^3}}}{{abc}};\,\,P = 1 + \frac{{2{b^3}}}{{abc}}.\)
Khi đó \(C = M + N + P = 1 + \frac{{2{c^3}}}{{abc}} + 1 + \frac{{2{a^3}}}{{abc}} + 1 + \frac{{2{b^3}}}{{abc}} = 3 + \frac{{2\left( {{a^3} + {b^3} + {c^3}} \right)}}{{abc}}.\)
Mặt khác, do \[a + b + c = 0\] nên ta có \[{\left( {a + b + c} \right)^3} = 0\]
Suy ra \[{\left( {a + b} \right)^3} + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + 3ab\left( {a + b} \right) + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right] = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( { - c} \right)\left( { - a} \right)\left( { - b} \right) = 0\]
\[{a^3} + {b^3} + {c^3} - 3abc = 0\]
\[{a^3} + {b^3} + {c^3} = 3abc.\]
Vậy \(C = 3 + \frac{{2 \cdot \left( {3abc} \right)}}{{abc}} = 3 + 6 = 9.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.