Tính đạo hàm của hàm số \(y = \sin x + \cos x\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 9 có đáp án !!
Quảng cáo
Trả lời:
\(y' = {\left( {\sin x + \cos x} \right)^\prime } = \cos x - \sin x\). Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Điều kiện \(\frac{x}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).
Tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
b) Ta có \(y' = \frac{{{{\left( {\frac{x}{{x + 1}}} \right)}^\prime }}}{{\frac{x}{{x + 1}}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{x + 1}}{x} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{{{x^2} + x}}\).
c) \(y'\left( 3 \right) = \frac{1}{{{3^2} + 3}} = \frac{1}{{12}}\).
d) Có \(f'\left( x \right) = \frac{1}{{{x^2} + x}} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).
Do đó \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2025}} - \frac{1}{{2026}}\)\( = 1 - \frac{1}{{2026}} = \frac{{2025}}{{2026}}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
Lời giải
a) \(f'\left( x \right) = 3{x^2} - 6x + 3\). Khi đó \(f'\left( 1 \right) = 3 \cdot {1^2} - 6 \cdot 1 + 3 = 0\).
b) Vì tiếp tuyến song song với trục \(Ox\) nên \(f'\left( x \right) = 3{x^2} - 6x + 3 = 0 \Leftrightarrow x = 1\).
Với \(x = 1 \Rightarrow y = 0\). Khi đó tiếp tuyến là \(y = 0\) (loại).
Vậy không có tiếp tuyến của \(\left( C \right)\) song song với trục \(Ox\).
c) Hệ số góc của tiếp tuyến tại điểm \(A\left( {2;1} \right)\) là \(f'\left( 2 \right) = 3 \cdot {2^2} - 6 \cdot 2 + 3 = 3\).
Do đó phương trình tiếp tuyến tại điểm \(A\left( {2;1} \right)\) của \(\left( C \right)\) là \(y = 3\left( {x - 2} \right) + 1 = 3x - 5\).
d) Có \(f'\left( x \right) = 3\)\( \Leftrightarrow 3{x^2} - 6x + 3 = 3 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Vậy tập nghiệm của phương trình là \(S = \left\{ {0;2} \right\}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.