Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 3x - 1\) có đồ thị là \(\left( C \right)\).
Quảng cáo
Trả lời:
a) \(f'\left( x \right) = 3{x^2} - 6x + 3\). Khi đó \(f'\left( 1 \right) = 3 \cdot {1^2} - 6 \cdot 1 + 3 = 0\).
b) Vì tiếp tuyến song song với trục \(Ox\) nên \(f'\left( x \right) = 3{x^2} - 6x + 3 = 0 \Leftrightarrow x = 1\).
Với \(x = 1 \Rightarrow y = 0\). Khi đó tiếp tuyến là \(y = 0\) (loại).
Vậy không có tiếp tuyến của \(\left( C \right)\) song song với trục \(Ox\).
c) Hệ số góc của tiếp tuyến tại điểm \(A\left( {2;1} \right)\) là \(f'\left( 2 \right) = 3 \cdot {2^2} - 6 \cdot 2 + 3 = 3\).
Do đó phương trình tiếp tuyến tại điểm \(A\left( {2;1} \right)\) của \(\left( C \right)\) là \(y = 3\left( {x - 2} \right) + 1 = 3x - 5\).
d) Có \(f'\left( x \right) = 3\)\( \Leftrightarrow 3{x^2} - 6x + 3 = 3 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Vậy tập nghiệm của phương trình là \(S = \left\{ {0;2} \right\}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).
Với \(x = 1 \Rightarrow y = 1\).
Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 1 là \(y'\left( 1 \right) = \frac{2}{{{{\left( {1 + 1} \right)}^2}}} = \frac{1}{2}\).
Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 1 là \(y = \frac{1}{2}\left( {x - 1} \right) + 1 = \frac{1}{2}x + \frac{1}{2}\).
Khi đó \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 1;0} \right),B\left( {0;\frac{1}{2}} \right)\).
Khi đó \(\Delta OAB\) vuông tại \(O\) và có diện tích là \({S_{\Delta OAB}} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4} = 0,25\).
Trả lời: 0,25.
Lời giải
Với \(x \ne 1\) thì \(f\left( x \right)\) là tổng của 2019 số hạng đầu của cấp số nhân với \({u_1} = 1;q = x\) nên ta được:
\(f\left( x \right) = \frac{{1 - {x^{2019}}}}{{1 - x}} = \frac{{{x^{2019}} - 1}}{{x - 1}}\).
Khi đó \(f'\left( x \right) = \frac{{2019{x^{2018}}\left( {x - 1} \right) - \left( {{x^{2019}} - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).
Suy ra \(f'\left( 2 \right) = \frac{{2019 \cdot {2^{2018}}\left( {2 - 1} \right) - \left( {{2^{2019}} - 1} \right)}}{{{{\left( {2 - 1} \right)}^2}}} = 2017 \cdot {2^{2018}} + 1\).
Vậy \(a = 2017,b = 2018 \Rightarrow a + b = 4035\).
Trả lời: 4035.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.