Phương trình chuyển động của một hạt được cho bởi công thức \(S\left( t \right) = 15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)\) trong đó \(s\) tính bằng centimet và \(t\) tính bằng giây. Vận tốc cực đại của hạt bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Phương trình chuyển động của một hạt được cho bởi công thức \(S\left( t \right) = 15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)\) trong đó \(s\) tính bằng centimet và \(t\) tính bằng giây. Vận tốc cực đại của hạt bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Vận tốc của hạt sau \(t\) giây là
\(v\left( t \right) = S'\left( t \right) = {\left( {15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)} \right)^\prime }\)\( = 2\sqrt 3 \cos \left( {3\pi t + \frac{\pi }{5}} \right) \cdot {\left( {3\pi t + \frac{\pi }{5}} \right)^\prime }\)\( = 6\sqrt 3 \pi \cos \left( {3\pi t + \frac{\pi }{5}} \right)\).
Vì \(\left| {\cos \left( {3\pi t + \frac{\pi }{5}} \right)} \right| \le 1\) nên \(\left| {6\sqrt 3 \pi \cos \left( {3\pi t + \frac{\pi }{5}} \right)} \right| \le 6\sqrt 3 \pi \) hay \(\left| {v\left( t \right)} \right| \le 6\sqrt 3 \pi \).
Do đó vận tốc cực đại của hạt là \(6\sqrt 3 \pi \approx 32,6\).
Trả lời: 32,6.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Điều kiện \(\frac{x}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).
Tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
b) Ta có \(y' = \frac{{{{\left( {\frac{x}{{x + 1}}} \right)}^\prime }}}{{\frac{x}{{x + 1}}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{x + 1}}{x} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{{{x^2} + x}}\).
c) \(y'\left( 3 \right) = \frac{1}{{{3^2} + 3}} = \frac{1}{{12}}\).
d) Có \(f'\left( x \right) = \frac{1}{{{x^2} + x}} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).
Do đó \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2025}} - \frac{1}{{2026}}\)\( = 1 - \frac{1}{{2026}} = \frac{{2025}}{{2026}}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
Lời giải
a) Điều kiện \(x \ne 1\).
Do đó hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).
Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là \(y'\left( 2 \right) = \frac{{ - 1}}{{{{\left( {2 - 1} \right)}^2}}} = - 1\).
Với \(x = 2 \Rightarrow y = 2\).
Vậy phương trình tiếp tuyến cần tìm là \(y = - \left( {x - 2} \right) + 2 = - x + 4\).
c) Tiếp tuyến của \(\left( C \right)\) song song với đường thẳng \(y = - x\) nên
Với \(x = 0 \Rightarrow y = 0\). Khi đó tiếp tuyến trùng với đường thẳng \(y = - x\) (loại).
Với \(x = 2 \Rightarrow y = 2\) thì tiếp tuyến là \(y = - x + 4\) (theo câu b).
d) Có \(f''\left( x \right) = \frac{2}{{{{\left( {x - 1} \right)}^3}}}\). Khi đó \(f''\left( 3 \right) = \frac{2}{{{{\left( {3 - 1} \right)}^3}}} = \frac{1}{4}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.