Phương trình chuyển động của một hạt được cho bởi công thức \(S\left( t \right) = 15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)\) trong đó \(s\) tính bằng centimet và \(t\) tính bằng giây. Vận tốc cực đại của hạt bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Phương trình chuyển động của một hạt được cho bởi công thức \(S\left( t \right) = 15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)\) trong đó \(s\) tính bằng centimet và \(t\) tính bằng giây. Vận tốc cực đại của hạt bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 9 có đáp án !!
Quảng cáo
Trả lời:
Vận tốc của hạt sau \(t\) giây là
\(v\left( t \right) = S'\left( t \right) = {\left( {15 + 2\sqrt 3 \sin \left( {3\pi t + \frac{\pi }{5}} \right)} \right)^\prime }\)\( = 2\sqrt 3 \cos \left( {3\pi t + \frac{\pi }{5}} \right) \cdot {\left( {3\pi t + \frac{\pi }{5}} \right)^\prime }\)\( = 6\sqrt 3 \pi \cos \left( {3\pi t + \frac{\pi }{5}} \right)\).
Vì \(\left| {\cos \left( {3\pi t + \frac{\pi }{5}} \right)} \right| \le 1\) nên \(\left| {6\sqrt 3 \pi \cos \left( {3\pi t + \frac{\pi }{5}} \right)} \right| \le 6\sqrt 3 \pi \) hay \(\left| {v\left( t \right)} \right| \le 6\sqrt 3 \pi \).
Do đó vận tốc cực đại của hạt là \(6\sqrt 3 \pi \approx 32,6\).
Trả lời: 32,6.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Điều kiện \(\frac{x}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).
Tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
b) Ta có \(y' = \frac{{{{\left( {\frac{x}{{x + 1}}} \right)}^\prime }}}{{\frac{x}{{x + 1}}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{x + 1}}{x} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{{{x^2} + x}}\).
c) \(y'\left( 3 \right) = \frac{1}{{{3^2} + 3}} = \frac{1}{{12}}\).
d) Có \(f'\left( x \right) = \frac{1}{{{x^2} + x}} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).
Do đó \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2025}} - \frac{1}{{2026}}\)\( = 1 - \frac{1}{{2026}} = \frac{{2025}}{{2026}}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
Lời giải
a) \(f'\left( x \right) = 3{x^2} - 6x + 3\). Khi đó \(f'\left( 1 \right) = 3 \cdot {1^2} - 6 \cdot 1 + 3 = 0\).
b) Vì tiếp tuyến song song với trục \(Ox\) nên \(f'\left( x \right) = 3{x^2} - 6x + 3 = 0 \Leftrightarrow x = 1\).
Với \(x = 1 \Rightarrow y = 0\). Khi đó tiếp tuyến là \(y = 0\) (loại).
Vậy không có tiếp tuyến của \(\left( C \right)\) song song với trục \(Ox\).
c) Hệ số góc của tiếp tuyến tại điểm \(A\left( {2;1} \right)\) là \(f'\left( 2 \right) = 3 \cdot {2^2} - 6 \cdot 2 + 3 = 3\).
Do đó phương trình tiếp tuyến tại điểm \(A\left( {2;1} \right)\) của \(\left( C \right)\) là \(y = 3\left( {x - 2} \right) + 1 = 3x - 5\).
d) Có \(f'\left( x \right) = 3\)\( \Leftrightarrow 3{x^2} - 6x + 3 = 3 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Vậy tập nghiệm của phương trình là \(S = \left\{ {0;2} \right\}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.