Câu hỏi:

06/12/2025 12 Lưu

Cho hình chóp đều \(S.ABCD\). Mặt phẳng \(\left( P \right)\) không đi qua \(S\), song song với mặt phẳng đáy \(ABCD\) cắt các cạnh bên \(SA,SB,SC,SD\) lần lượt tại \(M,N,P,Q\). Hình \(ABCD.MNPQ\) là hình gì?    

A. Hình lăng trụ.         
B. Hình chóp.             
C. Hình chóp đều.                                  
D. Hình chóp cụt đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Có\(SA \bot \left( {ABC} \right)\) mà \(SA (ảnh 1)

\(ABCD.MNPQ\) là hình chóp cụt đều. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {SCA}\).                                   
B. \(\widehat {SOA}\).                          
C. \(\widehat {SOC}\).                          
D. \(\widehat {SOD}\).

Lời giải

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)\(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\).

Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\)\(\widehat {SOC}\). Chọn C.

Câu 2

A. \(a\sqrt 3 \).           
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Thể tích của khối lăng trụ là \(V = Sh = {\left( {3a} \right)^2} \cdot a = 9{a^3}\). Chọn B. (ảnh 1)

\(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB\)\(AB \bot AD\) nên \(AB \bot \left( {SAD} \right)\).

Do đó \(d\left( {B,\left( {SAD} \right)} \right) = AB = a\). Chọn D.

Câu 3

A. \(SP\).                     
B. \(MP\).                    
C. \(MN\).                            
D. \(MQ\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(SA\).                     
B. \(SM\).                    
C. \(SB\).                              
D. \(SH\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(SA \bot AB\).
Đúng
Sai
b) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Đúng
Sai
d) Đặt \(\alpha \) là góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\). Giá trị của \(\tan \alpha = \frac{1}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP