Câu hỏi:

06/12/2025 106 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh bên bằng \(2a\), cạnh đáy bằng \(a\). Gọi \(O\) là giao điểm của \(AC\)\(BD\).

a) Diện tích đáy của khối chóp là \(2{a^3}\).
Đúng
Sai
b) Chiều cao của khối chóp \(S.ABCD\)\(SO\).
Đúng
Sai
c) Thể tích của khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt {14} }}{6}\).
Đúng
Sai
d) Gọi \(P\) là trung điểm của \(SA\), khi đó \({V_{P.OAB}} = \frac{1}{8}{V_{S.ABCD}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: a) Sai;    b) (ảnh 1)

a) \({S_{ABCD}} = {a^2}\).

b) Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

c) Ta có \(AO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\).

Xét \(\Delta SOA\) vuông tại \(O\), \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {4{a^2} - \frac{{2{a^2}}}{4}} = \frac{{a\sqrt {14} }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt {14} }}{2} \cdot {a^2} = \frac{{{a^3}\sqrt {14} }}{6}\).

d) Vì \(P\) là trung điểm của \(SA\) nên \(d\left( {P,\left( {ABCD} \right)} \right) = \frac{1}{2}d\left( {S,\left( {ABCD} \right)} \right) = \frac{1}{2}SO\).

\({S_{AOB}} = \frac{1}{4}{S_{ABCD}}\).

Do đó \({V_{P.AOB}} = \frac{1}{3} \cdot \frac{1}{2}SO \cdot \frac{1}{4}{S_{ABCD}} = \frac{1}{8} \cdot \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{8}{V_{S.ABCD}}\).

Đáp án: a) Sai;    b) Đúng;    c) Đúng;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(SA \bot AB\).
Đúng
Sai
b) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Đúng
Sai
d) Đặt \(\alpha \) là góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\). Giá trị của \(\tan \alpha = \frac{1}{2}\).
Đúng
Sai

Lời giải

Đáp án: a) Đúng;    b) Đúng;    c) (ảnh 1)

a) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\).

b) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\)\(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\).

c) Có \(\left( {SAB} \right) \cap \left( {SAC} \right) = SA\)\(AB \bot SA,AC \bot SA\) nên \(\left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \widehat {BAC}\).

d) Ta có \(AC\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {ABCD} \right)\) nên \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\).

\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + 3{a^2}} = 2a\).

Xét \(\Delta SAC\) vuông tại \(A\), ta có \(\tan \alpha = \frac{{SA}}{{AC}} = \frac{a}{{2a}} = \frac{1}{2}\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;     d) Đúng.

Câu 2

A. \(\widehat {SCA}\).                                   
B. \(\widehat {SOA}\).                          
C. \(\widehat {SOC}\).                          
D. \(\widehat {SOD}\).

Lời giải

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)\(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\).

Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\)\(\widehat {SOC}\). Chọn C.

Câu 4

a) \(AM\) là đoạn vuông góc chung của hai đường thẳng chéo nhau \(AA'\)\(BC\).
Đúng
Sai
b) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A'BC} \right)\)\(\frac{{a\sqrt {15} }}{5}\).
Đúng
Sai
c) Khoảng cách giữa hai mặt phẳng \(\left( {ABC} \right)\)\(\left( {A'B'C'} \right)\) bằng \(a\sqrt 2 \).
Đúng
Sai
d) Khoảng cách giữa hai đường thẳng \(AA'\)\(BC\)\(\frac{{a\sqrt 5 }}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(SA\).                     
B. \(SG\).                    
C. \(SB\).                              
D. \(SH\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(BC \bot SA\).
Đúng
Sai
b) \(BD \bot \left( {SAB} \right)\).
Đúng
Sai
c) Thể tích của khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{\sqrt 3 }}{4}{a^3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP