Câu hỏi:

06/12/2025 12 Lưu

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BA = a,BC = \sqrt 3 a,AA' = 2a\).

a) Góc giữa \(AC'\)\(\left( {ABB'A'} \right)\)\(\widehat {B'AC'}\).
Đúng
Sai
b) Thể tích lăng trụ đã cho bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
c) Hai mặt phẳng \(\left( {BCC'B'} \right)\)\(\left( {ABC} \right)\) vuông góc nhau.
Đúng
Sai
d) Khoảng cách giữa \(AA'\)\(BC'\) bằng \(\frac{{a\sqrt 3 }}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: a) Đúng;    b) Sai;  (ảnh 1)

a) Ta có \(B'C' \bot A'B'\)\(BB' \bot B'C'\) nên \(B'C' \bot \left( {ABB'A'} \right)\).

Do đó \(AB'\) là hình chiếu của \(AC'\) trên mặt phẳng \(\left( {ABB'A'} \right)\).

Suy ra \(\left( {AC',\left( {ABB'A'} \right)} \right) = \left( {AC',AB'} \right) = \widehat {B'AC'}\).

b) \({V_{ABC.A'B'C'}} = AA' \cdot {S_{ABC}} = 2a \cdot \frac{1}{2} \cdot a \cdot a\sqrt 3 = {a^3}\sqrt 3 \).

c) Do \(ABC.A'B'C'\) là lăng trụ đứng nên \(\left( {BCC'B'} \right) \bot \left( {ABC} \right)\).

d) Có \(AA' \bot AB\)\(AB \bot BC'\)(do \(AB \bot \left( {BCC'B'} \right)\)).

Suy ra \(d\left( {AA',BC'} \right) = AB = a\).

Đáp án: a) Đúng;    b) Sai;    c) Đúng;     d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {SCA}\).                                   
B. \(\widehat {SOA}\).                          
C. \(\widehat {SOC}\).                          
D. \(\widehat {SOD}\).

Lời giải

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)\(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\).

Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\)\(\widehat {SOC}\). Chọn C.

Câu 2

A. \(a\sqrt 3 \).           
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Thể tích của khối lăng trụ là \(V = Sh = {\left( {3a} \right)^2} \cdot a = 9{a^3}\). Chọn B. (ảnh 1)

\(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB\)\(AB \bot AD\) nên \(AB \bot \left( {SAD} \right)\).

Do đó \(d\left( {B,\left( {SAD} \right)} \right) = AB = a\). Chọn D.

Câu 3

A. \(SP\).                     
B. \(MP\).                    
C. \(MN\).                            
D. \(MQ\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(SA\).                     
B. \(SM\).                    
C. \(SB\).                              
D. \(SH\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(SA \bot AB\).
Đúng
Sai
b) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Đúng
Sai
d) Đặt \(\alpha \) là góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\). Giá trị của \(\tan \alpha = \frac{1}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(AC \bot AD\).
Đúng
Sai
b) \(AB \bot \left( {ACD} \right)\).
Đúng
Sai
c) \(AB \bot AC\).
Đúng
Sai
d) \(AB \bot \left( {ABC} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP