Câu hỏi:

06/12/2025 13 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Biết \(SA \bot \left( {ABCD} \right)\)\(SA = a\sqrt 2 \)

a) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\) bằng \(\frac{{a\sqrt 6 }}{3}\).
Đúng
Sai
b) Số đo của góc nhị diện \(\left[ {S,BC,A} \right]\) bằng \(45^\circ \).
Đúng
Sai
c) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
d) Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 2 }}{3}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: a) Đúng;    (ảnh 1)

a) Hạ \(AH \bot SD\) (1).

Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\)\(CD \bot AD\) nên \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot AH\) (2).

Từ (1) và (2), suy ra \(AH \bot \left( {SCD} \right)\).

Ta có \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = AH\).

Xét \(\Delta SAD\) vuông tại \(A\), có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{2{a^2}}} + \frac{1}{{{a^2}}} = \frac{3}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{3}\).

b) Có \(AB \bot BC\)\(BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Suy ra \(\widehat {SBA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,A} \right]\).

Xét \(\Delta SAB\) vuông tại \(A\), \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \Rightarrow \widehat {SBA} \approx 54,7^\circ \).

c) Theo câu b, \(BC \bot \left( {SAB} \right)\).

d) \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot a\sqrt 2 \cdot {a^2} = \frac{{{a^3}\sqrt 2 }}{3}\).

Đáp án: a) Đúng;    b) Sai;    c) Đúng;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {SCA}\).                                   
B. \(\widehat {SOA}\).                          
C. \(\widehat {SOC}\).                          
D. \(\widehat {SOD}\).

Lời giải

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)\(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\).

Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\)\(\widehat {SOC}\). Chọn C.

Câu 2

A. \(a\sqrt 3 \).           
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Thể tích của khối lăng trụ là \(V = Sh = {\left( {3a} \right)^2} \cdot a = 9{a^3}\). Chọn B. (ảnh 1)

\(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB\)\(AB \bot AD\) nên \(AB \bot \left( {SAD} \right)\).

Do đó \(d\left( {B,\left( {SAD} \right)} \right) = AB = a\). Chọn D.

Câu 3

A. \(SA\).                     
B. \(SM\).                    
C. \(SB\).                              
D. \(SH\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(SA \bot AB\).
Đúng
Sai
b) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Đúng
Sai
d) Đặt \(\alpha \) là góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\). Giá trị của \(\tan \alpha = \frac{1}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3\).                        
B. \(2\).                        
C. Vô số.                                    
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP