Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Biết \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 \)
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 7 có đáp án !!
Quảng cáo
Trả lời:

a) Hạ \(AH \bot SD\) (1).
Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\) mà \(CD \bot AD\) nên \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot AH\) (2).
Từ (1) và (2), suy ra \(AH \bot \left( {SCD} \right)\).
Ta có \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = AH\).
Xét \(\Delta SAD\) vuông tại \(A\), có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{2{a^2}}} + \frac{1}{{{a^2}}} = \frac{3}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{3}\).
b) Có \(AB \bot BC\) mà \(BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).
Suy ra \(\widehat {SBA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,A} \right]\).
Xét \(\Delta SAB\) vuông tại \(A\), \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \Rightarrow \widehat {SBA} \approx 54,7^\circ \).
c) Theo câu b, \(BC \bot \left( {SAB} \right)\).
d) \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot a\sqrt 2 \cdot {a^2} = \frac{{{a^3}\sqrt 2 }}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\).
b) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\).
c) Có \(\left( {SAB} \right) \cap \left( {SAC} \right) = SA\) mà \(AB \bot SA,AC \bot SA\) nên \(\left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \widehat {BAC}\).
d) Ta có \(AC\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {ABCD} \right)\) nên \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\).
Có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + 3{a^2}} = 2a\).
Xét \(\Delta SAC\) vuông tại \(A\), ta có \(\tan \alpha = \frac{{SA}}{{AC}} = \frac{a}{{2a}} = \frac{1}{2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Câu 2
Lời giải
Có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\) mà \(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).
Lại có \(CO \bot BD\).
Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\) là \(\widehat {SOC}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
