Câu hỏi:

05/12/2025 7 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a;BC = a\sqrt 3 ,SA = a\)\(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

a) \(SA \bot AB\).
Đúng
Sai
b) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Đúng
Sai
d) Đặt \(\alpha \) là góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\). Giá trị của \(\tan \alpha = \frac{1}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: a) Đúng;    b) Đúng;    c) (ảnh 1)

a) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\).

b) Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\)\(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\).

c) Có \(\left( {SAB} \right) \cap \left( {SAC} \right) = SA\)\(AB \bot SA,AC \bot SA\) nên \(\left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \widehat {BAC}\).

d) Ta có \(AC\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {ABCD} \right)\) nên \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\).

\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + 3{a^2}} = 2a\).

Xét \(\Delta SAC\) vuông tại \(A\), ta có \(\tan \alpha = \frac{{SA}}{{AC}} = \frac{a}{{2a}} = \frac{1}{2}\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) (ảnh 1)

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\)\(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).

\(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\)\(SBC\) lần lượt cân tại \(A\)\(B\).

Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\)\(BI \bot SC\).

Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).

Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).

c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\)\(SN\).

Khi đó \(d\left( {BM,SN} \right) = MK\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

Câu 2

A. \(a\sqrt 5 \).            
B. \(a\sqrt {30} \).       
C. \(\frac{{a\sqrt 5 }}{2}\). 
D. \(\frac{{a\sqrt {30} }}{5}\).

Lời giải

 

Vì \(ABCD\) là hình vuông nên \(B (ảnh 1)

\(BO \bot AC,BO \bot AA' \Rightarrow BO \bot \left( {ACC'A'} \right)\).

Do đó \(d\left( {B,\left( {ACC'A'} \right)} \right) = BO = \frac{{BD}}{2} = \frac{{\sqrt {2{a^2} + 3{a^2}} }}{2} = \frac{{a\sqrt 5 }}{2}\). Chọn C.

Câu 3

A. Hình lăng trụ.         
B. Hình chóp.              
C. Hình chóp đều.                                  
D. Hình chóp cụt đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a\sqrt 3 \).            
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {AC'A'}\).                                 
B. \(\widehat {AC'C}\).                        
C. \(\widehat {C'CA'}\).                       
D. \(\widehat {ACC'}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Thể tích khối chóp đã cho bằng \(\frac{{2\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
b) \(SB \bot AC\).
Đúng
Sai
c) Góc giữa \(SC\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^\circ \).
Đúng
Sai
d) \(\tan \alpha = \frac{{2\sqrt 3 }}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP