Câu hỏi:

05/12/2025 90 Lưu

Cho hàm số \[f(x)\] xác định với mọi \[x \ne 0\] thỏa mãn \[f(x) + 3f\left( {\frac{1}{x}} \right) = 8x,\,\,x \ne 0\]. Tính \[\mathop {\lim }\limits_{x \to \sqrt 3 } \frac{{f(x)}}{{x - \sqrt 3 }}\]

A. \(2\)       
B. \( - 2\).    
C. \(0\).
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Từ \[f(x) + 3f\left( {\frac{1}{x}} \right) = 8x,\,\,x \ne 0\], thay \[x\] bởi \[\frac{1}{x}\] ta được \[f\left( {\frac{1}{x}} \right) + 3f\left( x \right) = \frac{8}{x}\]. Suy ra

\[\left\{ \begin{array}{l}f\left( {\frac{1}{x}} \right) + 3f\left( x \right) = \frac{8}{x}\\f\left( x \right) + 3f\left( {\frac{1}{x}} \right) = 8x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3f\left( {\frac{1}{x}} \right) + 9f\left( x \right) = \frac{{24}}{x}\\f\left( x \right) + 3f\left( {\frac{1}{x}} \right) = 8x\end{array} \right. \Rightarrow 8f\left( x \right) = 8\left( {\frac{3}{x} - x} \right)\]

\[ \Rightarrow f\left( x \right) = \frac{3}{x} - x = \frac{{3 - {x^2}}}{x}\]. Do đó

\[\mathop {\lim }\limits_{x \to \sqrt 3 } \frac{{f(x)}}{{x - \sqrt 3 }} = \mathop {\lim }\limits_{x \to \sqrt 3 } \frac{{3 - {x^2}}}{{x\left( {x - \sqrt 3 } \right)}} = \mathop {\lim }\limits_{x \to \sqrt 3 } \frac{{ - \left( {\sqrt 3 + x} \right)}}{x} = - 2\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\lim \left( {{u_n} + {v_n}} \right) = a + b\).   
B. \(\lim {u_n}{v_n} = ab\).
C. \(\lim (2{u_{_n}} - 3{v_n}) = 2a - 3b\).          
D. \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\).

Lời giải

Chọn D

Ta có \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\) chỉ đúng khi \(\lim {u_n} = a,\,\,\lim {v_n} = b,\,\left( {a;\,\,b \in \mathbb{R}} \right)\)\(b \ne 0\).

Câu 2

A. \(T = \left[ { - 1;1} \right].\)  
B. \(T = \left[ {0;1} \right].\)       
C. \(T = \left[ { - \sqrt 2 ;\sqrt 2 } \right].\)  
D. \(T = \left[ { - \sqrt 3 ;\sqrt 3 } \right]\).

Lời giải

Chọn A

Ta có \(y = \cos \left( {2x + \frac{\pi }{3}} \right) - \cos 2x = \cos 2x\cos \frac{\pi }{3} - \sin 2x\sin \frac{\pi }{3} - \cos 2x\)

\( = - \frac{1}{2}\cos 2x - \frac{{\sqrt 3 }}{2}\sin 2x = - \cos \left( {2x - \frac{\pi }{3}} \right)\). Do đó \( - 1 \le y = - \cos \left( {2x - \frac{\pi }{3}} \right) \le 1\).

Vậy \(T = \left[ { - 1;1} \right]\).

Câu 3

A.\[\sin a.\]      
B.\[ - \sin a.\]    
C.\[ - \cos 3a.\]  
D.\[\cos 3a.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(7\).     
B.\( + \infty .\) 
C.\( - \infty .\)           
D.\(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\({u_n} = {n^2} + n - 1\). 
B.\({u_n} = {n^2} + 1\).         
C.\({u_n} = {2^n}\). 
D.\({u_n} = 2n + 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP