Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC,AD\). Biết \(AB = 2a\), \(CD = 2a\sqrt 2 \) và \(MN = a\sqrt 5 .\) Số đo của góc giữa hai đường thẳng \(AB\) và \(CD\) bằng
Quảng cáo
Trả lời:
Chọn B

Gọi \(P,Q\) lần lượt là trung điểm của \(AC,BD\). Ta có
\(\left\{ \begin{array}{l}MP{\rm{//}}AB\\MQ{\rm{//}}CD\end{array} \right. \Rightarrow \left( {AB,CD} \right) = \left( {MP,MQ} \right)\).
Lại có tứ giác \(MPNQ\) là hình bình hành và \(MP = \frac{{AB}}{2} = a\), \(PN = \frac{{CD}}{2} = a\sqrt 2 \).
Trong tam giác \(MPN:\cos P = \frac{{P{M^2} + P{N^2} - M{N^2}}}{{2PM.PN}} = \frac{{{a^2} + 2{a^2} - 5{a^2}}}{{2.a.a\sqrt 2 }} = - \frac{1}{{\sqrt 2 }} \Rightarrow \widehat P = 135^\circ \)
Do đó \(\widehat M = 45^\circ = \left( {MP,MQ} \right) = \left( {AB,CD} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[M\],\(P,Q\) lần lượt là trung điểm của \[BC\],\(CD\),\(AB\).
Khi đó ta có: \(\left\{ \begin{array}{l}AC{\rm{//}}MQ\\BD{\rm{//}}MP\end{array} \right. \Rightarrow \left( {\widehat {AC,BD}} \right) = \left( {\widehat {MQ,MP}} \right)\).
Ta có \(\Delta QCD\) cân tại \(Q\), \(P\) là trung điểm \(CD\) nên suy ra \(QP \bot CD\)
\( \Rightarrow QP = \sqrt {Q{C^2} - C{P^2}} = \frac{{a\sqrt 2 }}{2}\) . Ta lại có: \(\begin{array}{l}\left\{ \begin{array}{l}MQ = \frac{1}{2}AC = \frac{a}{2}\\MP = \frac{1}{2}BD = \frac{a}{2}\end{array} \right.\\\end{array}\).
Suy ra: \(Q{P^2} = M{Q^2} + M{P^2} \Rightarrow \Delta MPQ\) vuông tại \(M\) \( \Rightarrow \left( {\widehat {MQ,MP}} \right) = \widehat {PMQ} = 90^\circ \).
Vậy \(\left( {\widehat {AC,BD}} \right) = 90^\circ \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
