Câu hỏi:

05/12/2025 5 Lưu

Dãy số nào dưới đây là dãy số giảm   

A. Dãy \(\left( {{u_n}} \right)\) với \({u_n} = {( - 1)^n}.\)                                   
B. Dãy \(\left( {{u_n}} \right)\) với \({u_n} = - 2n + 6\).   
C. Dãy \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{5}n - 4.\)                         
D. Dãy \(\left( {{u_n}} \right)\) với \({u_n} = 5n - 1\) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Xét dãy \(\left( {{u_n}} \right)\) với \({u_n} = - 2n + 6\). Ta có

\({u_{n + 1}} - {u_n} = - 2\left( {n + 1} \right) + 6 - \left( { - 2n + 6} \right) = - 2 < 0 \Rightarrow {u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\). Suy ra dãy số giảm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều ABCD cạnh a. Tính  góc giữa hai đường thẳng AC và BD (ảnh 1)

Gọi \[M\],\(P,Q\) lần lượt là trung điểm của \[BC\],\(CD\),\(AB\).

Khi đó ta có: \(\left\{ \begin{array}{l}AC{\rm{//}}MQ\\BD{\rm{//}}MP\end{array} \right. \Rightarrow \left( {\widehat {AC,BD}} \right) = \left( {\widehat {MQ,MP}} \right)\).

Ta có \(\Delta QCD\) cân tại \(Q\), \(P\) là trung điểm \(CD\) nên suy ra \(QP \bot CD\)

\( \Rightarrow QP = \sqrt {Q{C^2} - C{P^2}} = \frac{{a\sqrt 2 }}{2}\) . Ta lại có: \(\begin{array}{l}\left\{ \begin{array}{l}MQ = \frac{1}{2}AC = \frac{a}{2}\\MP = \frac{1}{2}BD = \frac{a}{2}\end{array} \right.\\\end{array}\).

Suy ra: \(Q{P^2} = M{Q^2} + M{P^2} \Rightarrow \Delta MPQ\) vuông tại \(M\) \( \Rightarrow \left( {\widehat {MQ,MP}} \right) = \widehat {PMQ} = 90^\circ \).

Vậy \(\left( {\widehat {AC,BD}} \right) = 90^\circ \).

Câu 4

A. \(1\).   
B. \( - \infty \). 
C. \(0\).     
D.  \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[MN{\rm{//}}\,(SCD)\].    
B. \[MN{\rm{//}}\,(SBC)\].  
C. \[MN{\rm{//}}\,(SAB)\].   
D. \[MN{\rm{//}}\,(ABD)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1;2;8;16;24;54\].           
B. Dãy \(({u_n})\) với \[{u_n} = {2^n} + 1,\,n \in {\mathbb{N}^*}\].    
C. Dãy \(({u_n})\) với \[{u_n} = {2^n} + 1,n \in {\mathbb{N}^*},12 < n < 2023\].     
D. \( - 1;1; - 1;1; - 1;1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\(7\).     
B.\( + \infty .\) 
C.\( - \infty .\)           
D.\(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP